The nonvesicular sterol transporter Aster-C plays a minor role in whole body cholesterol balance

被引:0
|
作者
Banerjee, Rakhee [1 ,2 ]
Hohe, Rachel C. [1 ,2 ]
Cao, Shijie [1 ,2 ]
Jung, Bryan M. [1 ,2 ]
Horak, Anthony J. [2 ]
Ramachandiran, Iyappan [2 ,3 ]
Massey, William J. [1 ,2 ,4 ]
Varadharajan, Venkateshwari [1 ,2 ]
Zajczenko, Natalie I. [1 ,2 ]
Burrows, Amy C. [1 ,2 ]
Dutta, Sumita [1 ,2 ]
Goudarzi, Maryam [1 ,2 ]
Mahen, Kala [1 ,2 ]
Carter, Abigail [5 ,6 ]
Helsley, Robert N. [5 ,6 ,7 ]
Gordon, Scott M. [5 ,6 ]
Morton, Richard E. [3 ]
Strauch, Christopher [8 ]
Willard, Belinda [8 ]
Gogonea, Camelia Baleanu [9 ]
Gogonea, Valentin [9 ]
Pedrelli, Matteo [10 ]
Parini, Paolo [10 ]
Brown, J. Mark [1 ,2 ]
机构
[1] Cleveland Clin, Lerner Res Inst, Dept Canc Biol, Cleveland, OH 44195 USA
[2] Cleveland Clin, Lerner Res Inst, Ctr Microbiome & Human Hlth, Cleveland, OH 44195 USA
[3] Cleveland Clin, Lerner Res Inst, Dept Cardiovasc & Metab Sci, Cleveland, OH USA
[4] Cleveland Clin, Lerner Res Inst, Dept Inflammat & Immun, Cleveland, OH USA
[5] Univ Kentucky, Coll Med, Dept Physiol, Lexington, KY USA
[6] Univ Kentucky, Saha Cardiovasc Res Ctr, Coll Med, Lexington, KY USA
[7] Univ Kentucky, Coll Med, Dept Internal Med, Div Endocrinol Diabet & Metab, Lexington, KY USA
[8] Cleveland Clin, Lerner Res Inst, Proteom & Metabol Core, Cleveland, OH USA
[9] Cleveland State Univ, Dept Chem, Cleveland, OH USA
[10] Karolinska Inst, Dept Lab Med, Huddinge, Sweden
基金
美国国家卫生研究院;
关键词
cholesterol; lipoprotein; metabolism; steroid hormone; oxysterol; PLASMA; ACIDS;
D O I
10.3389/fphys.2024.1371096
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Introduction: The Aster-C protein (encoded by the Gramd1c gene) is an endoplasmic reticulum (ER) resident protein that has been reported to transport cholesterol from the plasma membrane to the ER. Although there is a clear role for the closely-related Aster-B protein in cholesterol transport and downstream esterification in the adrenal gland, the specific role for Aster-C in cholesterol homeostasis is not well understood. Here, we have examined whole body cholesterol balance in mice globally lacking Aster-C under low or high dietary cholesterol conditions.Method: Age-matched Gramd1c +/+ and Gramd1c -/- mice were fed either low (0.02%, wt/wt) or high (0.2%, wt/wt) dietarycholesterol and levels of sterol-derived metabolites were assessed in the feces, liver, and plasma.Results: Compared to wild type controls (Gramd1c +/+) mice, mice lackingGramd1c (Gramd1c -/-) have no significant alterations in fecal, liver, or plasma cholesterol. Given the potential role for Aster C in modulating cholesterol metabolism in diverse tissues, we quantified levels of cholesterol metabolites such as bile acids, oxysterols, and steroid hormones. Compared to Gramd1c +/+ controls, Gramd1c -/- mice had modestly reduced levels of select bile acid species and elevated cortisol levels, only under low dietary cholesterol conditions. However, the vast majority of bile acids, oxysterols, and steroid hormones were unaltered in Gramd1c -/- mice. Bulk RNA sequencing in the liver showed that Gramd1c -/- mice did not exhibit alterations in sterol-sensitive genes, but instead showed altered expression of genes in major urinary protein and cytochrome P450 (CYP) families only under low dietary cholesterol conditions.Discussion: Collectively, these data indicate nominal effects of Aster-C on whole body cholesterol transport and metabolism under divergent dietary cholesterol conditions. These results strongly suggest that Aster-C alone is not sufficient to control whole body cholesterol balance, but can modestly impact circulating cortisol and bile acid levels when dietary cholesterol is limited.
引用
收藏
页数:16
相关论文
共 3 条
  • [1] The liver plays a key role in whole body sterol accretion of the neonatal Golden Syrian hamster
    Yao, Lihang
    Hom, Paul S.
    Heubi, James E.
    Woollett, Laura A.
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2007, 1771 (04): : 550 - 557
  • [2] Sterol balance in the Smith-Lemli-Opitz syndrome: reduction in whole body cholesterol synthesis and normal bile acid production
    Steiner, RD
    Linck, LM
    Flavell, DP
    Lin, DS
    Connor, WE
    JOURNAL OF LIPID RESEARCH, 2000, 41 (09) : 1437 - 1447
  • [3] Niemann-Pick C1 like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis
    Davis, HR
    Zhu, LJ
    Hoos, LM
    Tetzloff, G
    Maguire, M
    Liu, JJ
    Yao, XR
    Iyer, SPN
    Lam, MH
    Lund, EG
    Detmers, PA
    Graziano, MP
    Altmann, SW
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (32) : 33586 - 33592