Deep Learning-Based Malware Detection Using PE Headers

被引:1
|
作者
Nakrosis, Arnas [1 ,2 ]
Lagzdinyte-Budnike, Ingrida [1 ]
Paulauskaite-Taraseviene, Agne [1 ]
Paulikas, Giedrius [1 ]
Dapkus, Paulius [2 ]
机构
[1] Kaunas Univ Technol, Dept Appl Informat, Studentu St 50-407, LT-51368 Kaunas, Lithuania
[2] Minist Natl Def, Natl Cyber Secur Ctr, Gediminas Ave 40, Vilnius, Lithuania
关键词
Malicious software; Malware; PE header; Machine learning; Deep learning;
D O I
10.1007/978-3-031-16302-9_1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to recent advancements in technology, developers of intrusive software are finding more and more sophisticated ways to hide the existence of malicious code in software environments. It becomes difficult to identify viruses in the infected data sent in this way during analysis and detection phase of malware. For this reason, a significant amount of consideration has been devoted to research and development of methodologies and techniques that can identify miscellaneous malware without compromising the execution environment. In order to propose new methods, researchers are investigating not only the structure of malware detection algorithms, but also the properties that can be extracted from files. Extracted features allow malware to be detected even when virus creation tools change. The authors of this study proposed a data structure consisting of 486 attributes that describe the most important file characteristics. The proposed structure was used to train neural networks to detect viruses. A set of over 400,000 infected and benign files were used to build the data set. Various machine learning algorithms based on unsupervised (k-means, self-organizing maps) and supervised (VGG-16, convolutional neural networks, ResNet) learning were tested. The performed tests were designed to determine the usefulness of the tested algorithms to detect malicious software. Based on the implemented experimental research, the authors created and proposed a neural network architecture consisting of Dense and Dropout layers with L2 regularization that enables the detection of 8 types of malware with 98% accuracy. The great advantage of the article is the research carried out based on a large number of files. The proposed neural network architecture recognizes malware with at least the same accuracy as solutions offered by other authors and can be practically used to protect workstations against malicious files.
引用
收藏
页码:3 / 18
页数:16
相关论文
共 50 条
  • [41] Automated machine learning for deep learning based malware detection
    Brown, Austin
    Gupta, Maanak
    Abdelsalam, Mahmoud
    COMPUTERS & SECURITY, 2024, 137
  • [42] A Malware Detection Approach Using Autoencoder in Deep Learning
    Xing, Xiaofei
    Jin, Xiang
    Elahi, Haroon
    Jiang, Hai
    Wang, Guojun
    IEEE ACCESS, 2022, 10 : 25696 - 25706
  • [43] Android Malware Detection Using Deep Learning Methods
    Lukas, Robert
    Kolaczek, Grzegorz
    2021 IEEE 30TH INTERNATIONAL CONFERENCE ON ENABLING TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE 2021), 2021, : 119 - 124
  • [44] Robust Intelligent Malware Detection Using Deep Learning
    Vinayakumar, R.
    Alazab, Mamoun
    Soman, K. P.
    Poornachandran, Prabaharan
    Venkatraman, Sitalakshmi
    IEEE ACCESS, 2019, 7 : 46717 - 46738
  • [45] Evading Deep Learning-Based Malware Detectors via Obfuscation: A Deep Reinforcement Learning Approach
    Etter, Brian
    Hu, James Lee
    Ebrahimi, Mohammadreza
    Li, Weifeng
    Li, Xin
    Chen, Hsinchun
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 1313 - 1321
  • [46] A Method for Windows Malware Detection Based on Deep Learning
    Huang, Xiang
    Ma, Li
    Yang, Wenyin
    Zhong, Yong
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2021, 93 (2-3): : 265 - 273
  • [47] A Learning-based Static Malware Detection System with Integrated Feature
    Chen, Zhiguo
    Zhang, Xiaorui
    Kim, Sungryul
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 27 (03): : 891 - 908
  • [48] A Method for Windows Malware Detection Based on Deep Learning
    Xiang Huang
    Li Ma
    Wenyin Yang
    Yong Zhong
    Journal of Signal Processing Systems, 2021, 93 : 265 - 273
  • [49] Malware Detection Based on Deep Learning of Behavior Graphs
    Xiao, Fei
    Lin, Zhaowen
    Sun, Yi
    Ma, Yan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [50] Review of Android Malware Detection Based on Deep Learning
    Wang, Zhiqiang
    Liu, Qian
    Chi, Yaping
    IEEE ACCESS, 2020, 8 : 181102 - 181126