Physics-Informed Deep Learning-Based Real-Time Structural Response Prediction Method
被引:16
|
作者:
Zhou, Ying
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R ChinaTongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
Zhou, Ying
[1
]
Meng, Shiqiao
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R ChinaTongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
Meng, Shiqiao
[1
]
Lou, Yujie
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R ChinaTongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
Lou, Yujie
[1
]
Kong, Qingzhao
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R ChinaTongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
Kong, Qingzhao
[1
]
机构:
[1] Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
来源:
ENGINEERING
|
2024年
/
35卷
基金:
中国国家自然科学基金;
关键词:
Structural seismic response prediction;
Physics information informed;
Real-time prediction;
Earthquake engineering;
Data -driven machine learning;
OPTIMIZATION;
SIMULATION;
NETWORKS;
SYSTEM;
MODEL;
D O I:
10.1016/j.eng.2023.08.011
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
High -precision and efficient structural response prediction is essential for intelligent disaster prevention and mitigation in building structures, including post -earthquake damage assessment, structural health monitoring, and seismic resilience assessment of buildings. To improve the accuracy and efficiency of structural response prediction, this study proposes a novel physics -informed deep -learning -based realtime structural response prediction method that can predict a large number of nodes in a structure through a data -driven training method and an autoregressive training strategy. The proposed method includes a Phy-Seisformer model that incorporates the physical information of the structure into the model, thereby enabling higher -precision predictions. Experiments were conducted on a four-story masonry structure, an eleven -story reinforced concrete irregular structure, and a twenty -one-story reinforced concrete frame structure to verify the accuracy and efficiency of the proposed method. In addition, the effectiveness of the structure in the Phy-Seisformer model was verified using an ablation study. Furthermore, by conducting a comparative experiment, the impact of the range of seismic wave amplitudes on the prediction accuracy was studied. The experimental results show that the method proposed in this paper can achieve very high accuracy and at least 5000 times faster calculation speed than finite element calculations for different types of building structures. (c) 2023 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
机构:
Liverpool John Moores Univ, Sch Comp Sci & Math, Liverpool L3 3AF, Merseyside, EnglandLiverpool John Moores Univ, Sch Comp Sci & Math, Liverpool L3 3AF, Merseyside, England
Koh, Songsang
Zhou, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Liverpool John Moores Univ, Sch Comp Sci & Math, Liverpool L3 3AF, Merseyside, EnglandLiverpool John Moores Univ, Sch Comp Sci & Math, Liverpool L3 3AF, Merseyside, England
Zhou, Bo
Fang, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Loughborough Univ, Dept Comp Sci, Loughborough LE11 3TU, Leics, EnglandLiverpool John Moores Univ, Sch Comp Sci & Math, Liverpool L3 3AF, Merseyside, England
Fang, Hui
Yang, Po
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sheffield, Dept Comp Sci, Sheffield S10 2TN, S Yorkshire, EnglandLiverpool John Moores Univ, Sch Comp Sci & Math, Liverpool L3 3AF, Merseyside, England
Yang, Po
Yang, Zaili
论文数: 0引用数: 0
h-index: 0
机构:
Liverpool John Moores Univ, Sch Comp Sci & Math, Liverpool L3 3AF, Merseyside, EnglandLiverpool John Moores Univ, Sch Comp Sci & Math, Liverpool L3 3AF, Merseyside, England
Yang, Zaili
Yang, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ Hangzhou, Coll Elect Engn, Hangzhou 310027, Peoples R ChinaLiverpool John Moores Univ, Sch Comp Sci & Math, Liverpool L3 3AF, Merseyside, England
Yang, Qiang
Guan, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Loughborough Univ, Dept Comp Sci, Loughborough LE11 3TU, Leics, EnglandLiverpool John Moores Univ, Sch Comp Sci & Math, Liverpool L3 3AF, Merseyside, England
Guan, Lin
Ji, Zhigang
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Natl Key Lab Sci & Technol Micro Nano Fabricat, Shanghai 200240, Peoples R ChinaLiverpool John Moores Univ, Sch Comp Sci & Math, Liverpool L3 3AF, Merseyside, England
机构:
Cent South Univ, Sch Civil Engn, Changsha 410075, Hunan, Peoples R ChinaCent South Univ, Sch Civil Engn, Changsha 410075, Hunan, Peoples R China
Zhang, Zilong
Pan, Qiujing
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Civil Engn, Changsha 410075, Hunan, Peoples R ChinaCent South Univ, Sch Civil Engn, Changsha 410075, Hunan, Peoples R China
Pan, Qiujing
Yang, Zihan
论文数: 0引用数: 0
h-index: 0
机构:
China Construct Fifth Engn Div Corp Ltd, Changsha 410019, Hunan, Peoples R ChinaCent South Univ, Sch Civil Engn, Changsha 410075, Hunan, Peoples R China
Yang, Zihan
Yang, Xiaoli
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Civil Engn, Changsha 410075, Hunan, Peoples R ChinaCent South Univ, Sch Civil Engn, Changsha 410075, Hunan, Peoples R China
机构:
Fudan Univ, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China
Fudan Univ, Inst Atmospher Sci, Shanghai 200438, Peoples R ChinaFudan Univ, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China
Zhou, Yitian
Zhan, Ruifen
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China
Fudan Univ, Inst Atmospher Sci, Shanghai 200438, Peoples R China
Shanghai Typhoon Inst China Meteorol Adm, Shanghai 200030, Peoples R ChinaFudan Univ, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China
Zhan, Ruifen
Wang, Yuqing
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hawaii Manoa, Dept Atmospher Sci, Honolulu, HI 96822 USA
Univ Hawaii Manoa, Int Pacific Res Ctr, Honolulu, HI 96822 USAFudan Univ, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China
Wang, Yuqing
Chen, Peiyan
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Typhoon Inst China Meteorol Adm, Shanghai 200030, Peoples R ChinaFudan Univ, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China
Chen, Peiyan
Tan, Zhemin
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Sch Atmospher Sci, Key Lab Mesoscale Severe Weather, MOE, Nanjing 210023, Peoples R ChinaFudan Univ, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China
Tan, Zhemin
Xie, Zhipeng
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Comp Sci, Shanghai 200438, Peoples R ChinaFudan Univ, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China
Xie, Zhipeng
Nie, Xiuwen
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China
Fudan Univ, Inst Atmospher Sci, Shanghai 200438, Peoples R ChinaFudan Univ, Dept Atmospher & Ocean Sci, Shanghai 200438, Peoples R China