Binomial Confidence Intervals for Rare Events: Importance of Defining Margin of Error Relative to Magnitude of Proportion

被引:0
作者
Mcgrath, Owen [1 ]
Burke, Kevin [1 ]
机构
[1] Univ Limerick, Dept Math & Stat, Limerick, Ireland
基金
爱尔兰科学基金会;
关键词
Binomial; Coverage; Confidence interval; Margin of error; Proportion; Rare event; SAMPLE-SIZE; APPROXIMATE; ESTIMATORS; COVERAGE;
D O I
10.1080/00031305.2024.2350445
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Confidence interval performance is typically assessed in terms of two criteria: coverage probability and interval width (or margin of error). In this article, we assess the performance of four common proportion interval estimators: the Wald, Clopper-Pearson (exact), Wilson and Agresti-Coull, in the context of rare-event probabilities. We define the interval precision in terms of a relative margin of error which ensures consistency with the magnitude of the proportion. Thus, confidence interval estimators are assessed in terms of achieving a desired coverage probability whilst simultaneously satisfying the specified relative margin of error. We illustrate the importance of considering both coverage probability and relative margin of error when estimating rare-event proportions, and show that within this framework, all four interval estimators perform somewhat similarly for a given sample size and confidence level. We identify relative margin of error values that result in satisfactory coverage while being conservative in terms of sample size requirements, and hence suggest a range of values that can be adopted in practice. The proposed relative margin of error scheme is evaluated analytically, by simulation, and by application to a number of recent studies from the literature.
引用
收藏
页码:437 / 449
页数:13
相关论文
共 31 条
[1]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[2]   The Wald Confidence Interval for a Binomial p as an Illuminating "Bad" Example [J].
Andersson, Per Goesta .
AMERICAN STATISTICIAN, 2023, 77 (04) :443-448
[3]   BINOMIAL CONFIDENCE-INTERVALS [J].
BLYTH, CR ;
STILL, HA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1983, 78 (381) :108-116
[4]  
Boeing, 2022, STAT SUMMARY COMMERC
[5]   BETTER APPROXIMATE CONFIDENCE-INTERVALS FOR A BINOMIAL PARAMETER [J].
BOHNING, D .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1994, 22 (02) :207-218
[6]   Interval estimation for a binomial proportion - Comment - Rejoinder [J].
Brown, LD ;
Cai, TT ;
DasGupta, A ;
Agresti, A ;
Coull, BA ;
Casella, G ;
Corcoran, C ;
Mehta, C ;
Ghosh, M ;
Santner, TJ ;
Brown, LD ;
Cai, TT ;
DasGupta, A .
STATISTICAL SCIENCE, 2001, 16 (02) :101-133
[7]   The use of confidence or fiducial limits illustrated in the case of the binomial. [J].
Clopper, CJ ;
Pearson, ES .
BIOMETRIKA, 1934, 26 :404-413
[8]  
Evans J. R., 2015, INTRO 6 SIGMA PROCES
[9]  
Fisher RA, 1930, P CAMB PHILOS SOC, V26, P528
[10]  
Fleiss JL., 2003, STAT METHODS RATES P, DOI [10.1002/0471445428, DOI 10.1002/0471445428]