Application of Ensemble Machine Learning for Classification Problems on Very Small Datasets

被引:0
|
作者
Pavic, Ognjen [1 ]
Dasic, Lazar [1 ]
Geroski, Tijana [2 ,3 ]
Pirkovic, Marijana Stanojevic [4 ]
Milovanovic, Aleksandar [1 ]
Filipovic, Nenad [2 ,3 ]
机构
[1] Univ Kragujevac, Inst Informat Technol, Kragujevac 34000, Serbia
[2] Univ Kragujevac, Fac Engn, Kragujevac 34000, Serbia
[3] Bioengn Res & Dev Ctr BioIRC, Kragujevac 34000, Serbia
[4] Univ Kragujevac, Fac Med Sci, Kragujevac 34000, Serbia
关键词
Machine learning; Classification; Risk assessment; Random forest; Ensemble First Section;
D O I
10.1007/978-3-031-60840-7_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning is one of the most widely used branches of artificial intelligence in recent years. It is most commonly used for solving classification or regression problems through the utilization of supervised learning approaches. Machine learning models require high quality and a sufficient quantity of data to produce good results. This paper investigates an approach which incorporates ensemble learning through the aggregation of multiple machine learning models for the purposes of increasing prediction capabilities in cases in which a very limited amount of data is available for training. The ensemble model was trained on a patient fractional flow reserve biomarker dataset and with the goal of classifying patients into risk classes based on their risk of suffering an acute myocardial infarction. The ensemble model was comprised of multiple random forest classification models which were trained with different combinations of training and test data to improve the prediction accuracy over the use of a single random forest model. Final ensemble achieved a prediction accuracy of 71.3% which was an immense improvement over the 36% prediction accuracy of a single random forest classification model.
引用
收藏
页码:108 / 115
页数:8
相关论文
共 50 条
  • [41] Explainable Ensemble Machine Learning Method for Credit Risk Classification
    Ben Ghozzi, Sirine
    Ben HajKacem, Mohamed Aymen
    Essoussi, Nadia
    2024 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS, INISTA, 2024,
  • [42] Breast Tumor Classification Using an Ensemble Machine Learning Method
    Assiri, Adel S.
    Nazir, Saima
    Velastin, Sergio A.
    JOURNAL OF IMAGING, 2020, 6 (06)
  • [43] Lung Nodule Image Classification Based on Ensemble Machine Learning
    Mao Keming
    Deng Zhuofu
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2016, 6 (07) : 1679 - 1685
  • [44] Ensemble of extreme learning machine for remote sensing image classification
    Han, Min
    Liu, Ben
    NEUROCOMPUTING, 2015, 149 : 65 - 70
  • [45] Harnessing the Power of Ensemble Machine Learning for the Heart Stroke Classification
    Pal P.
    Nandal M.
    Dikshit S.
    Thusu A.
    Singh H.V.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9 (01)
  • [46] A novel ensemble machine learning for robust microarray data classification
    Peng, Yonghong
    COMPUTERS IN BIOLOGY AND MEDICINE, 2006, 36 (06) : 553 - 573
  • [47] CommentClass: A Robust Ensemble Machine Learning Model for Comment Classification
    Rahman, Md. Mostafizer
    Shiplu, Ariful Islam
    Watanobe, Yutaka
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [48] Application of machine learning ensemble models for rainfall prediction
    Hasan Ahmadi
    Babak Aminnejad
    Hojat Sabatsany
    Acta Geophysica, 2023, 71 : 1775 - 1786
  • [49] Application of machine learning ensemble models for rainfall prediction
    Ahmadi, Hasan
    Aminnejad, Babak
    Sabatsany, Hojat
    ACTA GEOPHYSICA, 2023, 71 (04) : 1775 - 1786
  • [50] Performance of Quantum Annealing Machine Learning Classification Models on ADMET Datasets
    Salloum, Hadi
    Sabbagh, Kamil
    Savchuk, Vladislav
    Lukin, Ruslan
    Orabi, Osama
    Isangulov, Marat
    Mazzara, Manuel
    IEEE ACCESS, 2025, 13 : 16263 - 16287