Enhanced Energy Storage Properties in Paraelectrics via Entropy Engineering

被引:4
|
作者
Lan, Shun [1 ]
Meng, Fanqi [1 ]
Yang, Bingbing [1 ,2 ]
Wang, Yue [1 ]
Liu, Yiqian [1 ]
Dou, Lvye [1 ]
Yang, Letao [1 ]
Pan, Hao [3 ]
Kong, Xi [1 ]
Ma, Jing [1 ]
Shen, Yang [1 ]
Nan, Ce-Wen [1 ]
Lin, Yuan-Hua [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Foshan Southern China Inst New Mat, Foshan 528200, Peoples R China
[3] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
来源
ADVANCED PHYSICS RESEARCH | 2023年 / 2卷 / 11期
基金
中国国家自然科学基金;
关键词
energy storage; paraelectrics; high-entropy systems; leakage; thin films; DENSITY; FILMS; EFFICIENCY; BAZRXTI1-XO3; CAPACITORS;
D O I
10.1002/apxr.202300006
中图分类号
O59 [应用物理学];
学科分类号
摘要
Electrostatic energy storage capacitors based on dielectrics have attracted much attention due to their wide applications in advanced electrical technology and electronic devices. Generally, high energy density is achieved at a high electric field, while conduction loss becomes nonnegligible, which harms practical applications. Here distinctly suppressed leakage current in BaZr0.5Ti0.5O3-based films by entropy engineering is realized. With increased entropy, the leakage current density decreases by two orders of magnitude at the electric field of 3 MV cm-1, leading to a markedly improved energy efficiency of 87% at an ultrahigh breakdown strength of 8 MV cm-1 in high-entropy films. Thereby, a high energy density of 51.9 J cm-3 is achieved. This work demonstrates the effectiveness of entropy engineering in improving the breakdown strength of dielectric films and shows great potential in enhancing the energy storage performance of capacitors. Entropy-modulated Ba(Zr, Ti)O3-based films with high orientation are prepared, and the continuous evolution of dielectric properties with entropy is studied. Significantly suppressed leakage current density leads to an ultrahigh breakdown strength of 8 MV cm-1 and enhances energy density of 51.9 J cm-3 in the high-entropy films, thereby providing a feasible approach to high-performance energy storage capacitors. image
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Giant Energy Storage Density with Antiferroelectric-Like Properties in BNT-Based Ceramics via Phase Structure Engineering
    Tang, Luomeng
    Yu, Ziyi
    Pan, Zhongbin
    Zhao, Jinghao
    Fu, Zhenqian
    Chen, Xiqi
    Li, Huanhuan
    Li, Peng
    Liu, Jinjun
    Zhai, Jiwei
    SMALL, 2023, 19 (40)
  • [22] Enhanced energy storage properties achieved in Na0.5Bi0.5TiO3-based ceramics via composition design and domain engineering
    Li, Da
    Zhou, Di
    Liu, Wenyuan
    Wang, Peng-Jian
    Guo, Yan
    Yao, Xiao-Gang
    Lin, Hui-Xing
    CHEMICAL ENGINEERING JOURNAL, 2021, 419
  • [23] Enhancing energy storage performance in barium titanate ceramics through mg-doping via creation of defect dipoles engineering
    Alkathy, Mahmoud S.
    Rajesh, Yalambaku
    Kassim, H. A.
    Gatasheh, Mansour K.
    Zabotto, Fabio L.
    Raju, K. C. James
    Eiras, Jose A.
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2024, 60 (05) : 1709 - 1721
  • [24] Domain dynamics engineering in ergodic relaxor ferroelectrics for dielectric energy storage
    Li, Yang
    Lin, Wei
    Yang, Bo
    Zhang, Shumin
    Zhao, Shifeng
    ACTA MATERIALIA, 2023, 255
  • [25] Capturing Carriers and Driving Depolarization by Defect Engineering for Dielectric Energy Storage
    Zhao, Yueshun
    Yang, Bo
    Liu, Yaping
    Zhou, Yunpeng
    Wu, Qiong
    Zhao, Shifeng
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) : 6547 - 6559
  • [26] Enhanced energy storage properties of lead-free NaNbO3-based ceramics via A/B-site substitution
    Jiang, Jie
    Meng, Xiangjun
    Li, Ling
    Zhang, Ji
    Guo, Shun
    Wang, Jing
    Hao, Xihong
    Zhu, Heguo
    Zhang, Shan-Tao
    CHEMICAL ENGINEERING JOURNAL, 2021, 422
  • [27] Superior energy storage properties in lead-free Na0.5Bi0.5TiO3-based relaxor ferroelectric ceramics via compositional tailoring and bandgap engineering
    Niu, Xiang
    Liang, Wei
    Jian, Xiaodong
    Tang, Hui
    Wang, Ting
    Gong, Weiping
    Shi, Hongwei
    Li, Feng
    Zhao, Xiaobo
    Yao, Ying-Bang
    Tao, Tao
    Liang, Bo
    Lu, Sheng-Guo
    SCRIPTA MATERIALIA, 2023, 230
  • [28] Enhanced energy storage density in BiFeO3-Based ceramics via phase ratio modulation and microstructure engineering
    Zhou, Zhixin
    Hu, Jiawen
    Lv, Ling
    Wang, Ting
    Liu, Jinjun
    Li, Peng
    Gong, Weiping
    Zhai, Jiwei
    Pan, Zhongbin
    JOURNAL OF POWER SOURCES, 2025, 629
  • [29] Enhanced energy storage properties of a novel lead-free ceramic with a multilayer structure
    Yan, Fei
    Yang, Haibo
    Ying, Lin
    Wang, Tong
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (29) : 7905 - 7912
  • [30] Achieving high energy storage properties in perovskite oxide via high-entropy design
    Ning, Yating
    Pu, Yongping
    Zhang, Qianwen
    Zhou, Shiyu
    Wu, Chunhui
    Zhang, Lei
    Shi, Yu
    Sun, Zixiong
    CERAMICS INTERNATIONAL, 2023, 49 (08) : 12214 - 12223