SolarFlux Predictor: A Novel Deep Learning Approach for Photovoltaic Power Forecasting in South Korea

被引:2
|
作者
Min, Hyunsik [1 ]
Hong, Seokjun [1 ]
Song, Jeonghoon [1 ]
Son, Byeoungmin [1 ]
Noh, Byeongjoon [1 ]
Moon, Jihoon [1 ]
机构
[1] Soonchunhyang Univ, Dept AI & Big Data, Asan 31538, South Korea
关键词
photovoltaic power forecasting; energy data analysis; temporal convolutional network; self-attention mechanism; transformer model; teacher forcing; Optuna; NEURAL-NETWORKS; OPTIMIZATION; SYSTEMS;
D O I
10.3390/electronics13112071
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present SolarFlux Predictor, a novel deep-learning model designed to revolutionize photovoltaic (PV) power forecasting in South Korea. This model uses a self-attention-based temporal convolutional network (TCN) to process and predict PV outputs with high precision. We perform meticulous data preprocessing to ensure accurate data normalization and outlier rectification, which are vital for reliable PV power data analysis. The TCN layers are crucial for capturing temporal patterns in PV energy data; we complement them with the teacher forcing technique during the training phase to significantly enhance the sequence prediction accuracy. By optimizing hyperparameters with Optuna, we further improve the model's performance. Our model incorporates multi-head self-attention mechanisms to focus on the most impactful temporal features, thereby improving forecasting accuracy. In validations against datasets from nine regions in South Korea, SolarFlux outperformed conventional methods. The results indicate that SolarFlux is a robust tool for optimizing PV systems' management and operational efficiency and can contribute to South Korea's pursuit of sustainable energy solutions.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] An adaptive deep learning framework for day-ahead forecasting of photovoltaic power generation
    Luo, Xing
    Zhang, Dongxiao
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [32] A cascaded deep learning framework for photovoltaic power forecasting with multi-fidelity inputs
    Luo, Xing
    Zhang, Dongxiao
    ENERGY, 2023, 268
  • [33] PHOTOVOLTAIC POWER FORECASTING BASED ON MAXIMUM OVERLAP DISCRETE WAVELET TRANSFORM AND DEEP LEARNING
    Ma L.
    Kong X.
    Guo L.
    Liu Y.
    Liu X.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (05): : 576 - 583
  • [34] Forecasting Photovoltaic Power Production using a Deep Learning Sequence to Sequence Model with Attention
    Kharlova, Elizaveta
    May, Daniel
    Musilek, Petr
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [35] Forecasting of photovoltaic power using probabilistic approach
    Sreenivasulu, J.
    Dukkipati, Sudha
    Marthanda, A. V. G. A.
    Pandian, A.
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 6800 - 6803
  • [36] Ramp Characteristics of Photovoltaic and Wind Power in South Korea
    Kim, Shin Young
    Kim, Hyun-Goo
    Kim, Bo Young
    Kim, Chang Ki
    Kang, Yong Heack
    Jang, Gil Soo
    2019 IEEE 16TH INTERNATIONAL CONFERENCE ON SMART CITIES: IMPROVING QUALITY OF LIFE USING ICT, IOT AND AI (IEEE HONET-ICT 2019), 2019, : 181 - 182
  • [37] Forecasting Building Electricity Power Consumption Using Deep Learning Approach
    Lee, Young-Jun
    Choi, Ho-Jin
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 542 - 544
  • [38] Deep learning based ensemble approach for probabilistic wind power forecasting
    Wang, Huai-zhi
    Li, Gang-qiang
    Wang, Gui-bin
    Peng, Jian-chun
    Jiang, Hui
    Liu, Yi-tao
    APPLIED ENERGY, 2017, 188 : 56 - 70
  • [39] Forecasting of Photovoltaic Power using Deep Belief Network
    Neo, Y. Q.
    Teo, T. T.
    Woo, W. L.
    Logenthiran, T.
    Sharma, A.
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 1189 - 1194
  • [40] Incorporating Deep Learning and News Topic Modeling for Forecasting Pork Prices: The Case of South Korea
    Chuluunsaikhan, Tserenpurev
    Ryu, Ga-Ae
    Yoo, Kwan-Hee
    Rah, HyungChul
    Nasridinov, Aziz
    AGRICULTURE-BASEL, 2020, 10 (11): : 1 - 22