Nanocrystal-based thermoelectric SnTe-NaSbSe 2 alloys with strengthened band convergence and reduced thermal conductivity

被引:11
作者
Nan, Bingfei [1 ,2 ]
Chang, Cheng [3 ]
Li, Zhihao [4 ]
Kapuria, Nilotpal [5 ,6 ,7 ]
Han, Xu [8 ]
Li, Mengyao [9 ]
Wang, Hongchao [4 ]
Ryan, Kevin M. [5 ,6 ]
Arbiol, Jordi [8 ,10 ]
Cabot, Andreu [1 ,10 ]
机构
[1] Catalonia Inst Energy Res IREC, Sant Adria Besos 08930, Barcelona, Spain
[2] Univ Barcelona, Marti Franques 1, Barcelona 08028, Spain
[3] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[4] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[5] Univ Limerick, Dept Chem Sci, Limerick V94T 9PX, Ireland
[6] Univ Limerick, Bernal Inst, Limerick V94T 9PX, Ireland
[7] Indiana Univ, Dept Chem, 800 E Kirkwood, Bloomington, IN 47405 USA
[8] CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, Barcelona 08193, Catalonia, Spain
[9] Zhengzhou Univ, Sch Phys & Microelect, Key Lab Mat Phys, Minist Educ, Zhengzhou 450001, Peoples R China
[10] ICREA, Pg Lluis Co 23, Barcelona 08010, Catalonia, Spain
基金
爱尔兰科学基金会;
关键词
Thermoelectric; Nanocrystals; SnTe; NaSbSe; 2; Alloy; Sn vacancies; TIN TELLURIDE; PERFORMANCE; BI; FIGURE; DOPANT; INDIUM; MERIT; ZN;
D O I
10.1016/j.cej.2024.152367
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ternary I-V-VI 2 colloidal NaSbSe 2 nanocrystals are herein used to improve the performance of lead-free SnTe thermoelectric materials. We showcase a versatile bottom-up engineering approach to produce nanocrystal-based SnTe-NaSbSe 2 alloys from the rapid hot press of colloidal nanocrystal building blocks. The incorporation of NaSbSe 2 nanocrystals significantly enhances the Seebeck coefficient of SnTe. The band convergence and simultaneous increasing band gap of SnTe-NaSbSe 2 alloys are certified by the first-principles density functional theory calculations. Besides, defect engineering generated by the incorporation of NaSbSe 2 nanocrystals such as Sn vacancies, substitution point defects, dense dislocations, and strains generated by the NaSbSe 2 nanoparticles incorporation result in a dramatic reduction of the lattice thermal conductivity below the amorphous limit of pure SnTe, down to 0.38 W m - 1 K -1 . As a consequence, power factors enhance up to 1.77 mW m - 1 K -2 , which is -193 % higher than that of the pristine SnTe, and thermoelectric figures of merit up to 1.15 at 823 K for (SnTe) 0.85 (NaSbSe 2 ) 0.15 are achieved.
引用
收藏
页数:12
相关论文
共 98 条
[81]   Zinc Doping Induces Enhanced Thermoelectric Performance of Solvothermal SnTe [J].
Wang, Lijun ;
Shi, Xiao-Lei ;
Li, Lvzhou ;
Hong, Min ;
Lin, Bencai ;
Miao, Pengcheng ;
Ding, Jianning ;
Yuan, Ningyi ;
Zheng, Shuqi ;
Chen, Zhi-Gang .
CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (10)
[82]   Thermoelectric Performance of Se/Cd Codoped SnTe via Microwave Solvothermal Method [J].
Wang, Lijun ;
Chang, Siyi ;
Zheng, Shuqi ;
Fang, Teng ;
Cui, Wenlin ;
Bai, Peng-Peng ;
Yue, Luo ;
Chen, Zhi-Gang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (27) :22612-22619
[83]   Thermoelectric Enhancements in PbTe Alloys Due to Dislocation-Induced Strains and Converged Bands [J].
Wu, Yixuan ;
Nan, Pengfei ;
Chen, Zhiwei ;
Zeng, Zezhu ;
Liu, Ruiheng ;
Dong, Hongliang ;
Xie, Li ;
Xiao, Youwei ;
Chen, Zhiqiang ;
Gu, Hongkai ;
Li, Wen ;
Chen, Yue ;
Ge, Binghui ;
Pei, Yanzhong .
ADVANCED SCIENCE, 2020, 7 (12)
[84]   A simple Pb-doping to achieve bonding evolution, VSn and resonant level shifting for regulating thermoelectric transport behavior of SnTe [J].
Xin, Xu-Ye ;
Ma, Jun ;
Liu, Hong-Quan ;
Gu, Yi-Jie ;
Wang, Yan-Fang ;
Cui, Hong-Zhi .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 151 :66-72
[85]   Thermoelectric Performance of Surface-Engineered Cu1.5-xTe-Cu2Se Nanocomposites [J].
Xing, Congcong ;
Zhang, Yu ;
Xiao, Ke ;
Han, Xu ;
Liu, Yu ;
Nan, Bingfei ;
Ramon, Maria Garcia ;
Lim, Khak Ho ;
Li, Junshan ;
Arbiol, Jordi ;
Poudel, Bed ;
Nozariasbmarz, Amin ;
Li, Wenjie ;
Ibanez, Maria ;
Cabot, Andreu .
ACS NANO, 2023, 17 (09) :8442-8452
[86]   Enhancing the thermoelectric performance of SnTe-CuSbSe2 with an ultra-low lattice thermal conductivity [J].
Xu, Huihong ;
Wan, Han ;
Xu, Rui ;
Hu, Zeqing ;
Liang, Xiaolong ;
Li, Zhou ;
Song, Jiming .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (08) :4310-4318
[87]   Optimized Electronic Bands and Ultralow Lattice Thermal Conductivity in Ag and Y Codoped SnTe [J].
Xu, Wenjing ;
Yang, Hengquan ;
Liu, Chengyan ;
Zhang, Zhongwei ;
Chen, Chunguang ;
Ye, Zhenyuan ;
Lu, Zhao ;
Wang, Xiaoyang ;
Gao, Jie ;
Chen, Junliang ;
Xie, Zhengchuan ;
Miao, Lei .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (28) :32876-32885
[88]   Entropy Engineering Realized Ultralow Thermal Conductivity and High Seebeck Coefficient in Lead-Free SnTe [J].
Yang, Junxuan ;
Cai, Jianfeng ;
Wang, Ruoyu ;
Guo, Zhe ;
Tan, Xiaojian ;
Liu, Guoqiang ;
Ge, Zhenhua ;
Jiang, Jun .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) :12738-12744
[89]   Synergistically promoted thermoelectric performance of SnTe by alloying with NaBiTe2 [J].
Zhang, Mengke ;
Tang, Xiaodan ;
Li, Nanhai ;
Wang, Guiwen ;
Wang, Guoyu ;
Liu, Anping ;
Lu, Xu ;
Zhou, Xiaoyuan .
APPLIED PHYSICS LETTERS, 2020, 116 (17)
[90]   High thermoelectric performance by resonant dopant indium in nanostructured SnTe [J].
Zhang, Qian ;
Liao, Bolin ;
Lan, Yucheng ;
Lukas, Kevin ;
Liu, Weishu ;
Esfarjani, Keivan ;
Opeil, Cyril ;
Broido, David ;
Chen, Gang ;
Ren, Zhifeng .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (33) :13261-13266