An Augmented Two-Scale Finite Element Method for Eigenvalue Problems

被引:0
作者
Dai, Xiaoying [1 ,2 ]
Du, Yunyun [1 ,2 ]
Liu, Fang [3 ]
Zhou, Aihui [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-scale; Finite element; Augmented subspace method; Eigenvalue problem; Partial differential equation; GROUND-STATE SOLUTION; DIMENSIONAL APPROXIMATIONS; NUMERICAL-ANALYSIS; MULTIGRID METHOD; DISCRETIZATIONS; SCHEME;
D O I
10.1007/s42967-024-00375-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an augmented two-scale finite element method is proposed for a class of linear and nonlinear eigenvalue problems on tensor-product domains. Through a correction step, the augmented two-scale finite element solution is obtained by solving an eigenvalue problem on a low-dimensional augmented subspace. Theoretical analysis and numerical experiments show that the augmented two-scale finite element solution achieves the same order of accuracy as the standard finite element solution on a fine grid, but the computational cost required by the former solution is much lower than that demanded by the latter. The augmented two-scale finite element method also improves the approximation accuracy of eigenfunctions in the L2(Omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2(\varOmega )$$\end{document} norm compared with the two-scale finite element method.
引用
收藏
页码:663 / 688
页数:26
相关论文
共 39 条
[1]   FINITE ELEMENT-GALERKIN APPROXIMATION OF THE EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS [J].
BABUSKA, I ;
OSBORN, JE .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :275-297
[2]  
BABUSKA I, 1991, HDB NUMERICAL ANAL, V2, P641
[3]  
Bao W., 2007, MASTER REV LECT NOTE, V9
[4]   Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow [J].
Bao, WZ ;
Du, Q .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05) :1674-1697
[5]  
Cances E., 2003, HDB NUMERICAL ANAL, VX, P3
[6]   Two-grid methods for a class of nonlinear elliptic eigenvalue problems [J].
Cances, Eric ;
Chakir, Rachida ;
He, Lianhua ;
Maday, Yvon .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (02) :605-645
[7]   NUMERICAL ANALYSIS OF THE PLANEWAVE DISCRETIZATION OF SOME ORBITAL-FREE AND KOHN-SHAM MODELS [J].
Cances, Eric ;
Chakir, Rachida ;
Maday, Yvon .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (02) :341-388
[8]   Numerical Analysis of Nonlinear Eigenvalue Problems [J].
Cances, Eric ;
Chakir, Rachida ;
Maday, Yvon .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) :90-117
[9]   Numerical analysis of finite dimensional approximations of Kohn-Sham models [J].
Chen, Huajie ;
Gong, Xingao ;
He, Lianhua ;
Yang, Zhang ;
Zhou, Aihui .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (02) :225-256
[10]   Finite element approximations of nonlinear eigenvalue problems in quantum physics [J].
Chen, Huajie ;
He, Lianhua ;
Zhou, Aihui .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (21-22) :1846-1865