Panoramic Radiograph Generation and Image Reconstruction from Latent Vectors Using a Generative Adversarial Network

被引:0
|
作者
Kokomoto, Kazuma [1 ]
Okawa, Rena [2 ]
Nakano, Kazuhiko [2 ]
Nozaki, Kazunori [1 ]
机构
[1] Osaka Univ, Div Med Informat, Dent Hosp, Osaka, Japan
[2] Osaka Univ, Dept Pediat Dent, Grad Sch Dent, Osaka, Japan
来源
MEDINFO 2023 - THE FUTURE IS ACCESSIBLE | 2024年 / 310卷
关键词
Generative adversarial network; anonymization; deep learning; dentistry;
D O I
10.3233/SHTI231263
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, StyleGAN2 was trained with panoramic radiographs, and original images were projected into the latent space of StyleGAN2. The resulting latent vectors were input into StyleGAN2, and corresponding images were generated to reconstruct the original images. The original and reconstructed images were evaluated by pediatric dentists and found to be similar. Our results suggest that StyleGAN2 could be applied to the anonymization and data compression of medical images.
引用
收藏
页码:1499 / 1500
页数:2
相关论文
共 50 条
  • [41] Underwater Image Deblurring Framework Using A Generative Adversarial Network
    Li, Tengyue
    Rong, Shenghui
    He, Bo
    Chen, Long
    OCEANS 2022, 2022,
  • [42] Sample generation based on residual generative adversarial network
    Wang X.
    Du W.
    Chen J.
    Chen H.-T.
    Kongzhi yu Juece/Control and Decision, 2020, 35 (08): : 1887 - 1894
  • [43] Land Clutter Data Generation Using Generative Adversarial Network
    Dang, Xunwang
    Chen, Yong
    Wang, Chao
    Yin, Hongcheng
    Xu, Honglei
    2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020), 2020,
  • [44] Image super-resolution reconstruction based on improved generative adversarial network
    Wang Y.-L.
    Li X.-J.
    Ma H.-B.
    Ding Q.
    Pirouz M.
    Ma Q.-T.
    Journal of Network Intelligence, 2021, 6 (02): : 155 - 163
  • [45] Unpaired medical image colorization using generative adversarial network
    Yihuai Liang
    Dongho Lee
    Yan Li
    Byeong-Seok Shin
    Multimedia Tools and Applications, 2022, 81 : 26669 - 26683
  • [46] Infrared and visible image fusion based on WEMD and generative adversarial network reconstruction
    Yang Y.
    Gao X.
    Dang J.
    Wang Y.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (03): : 320 - 330
  • [47] Single Image Haze Removal using a Generative Adversarial Network
    Raj, Bharath N.
    Venketeswaran, N.
    2020 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS SIGNAL PROCESSING AND NETWORKING (WISPNET), 2020, : 37 - 42
  • [48] Underwater image enhancement using a mixed generative adversarial network
    Mu, Delang
    Li, Heng
    Liu, Hui
    Dong, Ling
    Zhang, Guoyin
    IET IMAGE PROCESSING, 2023, 17 (04) : 1149 - 1160
  • [49] Image Super-resolution Reconstruction Based on an Improved Generative Adversarial Network
    Liu, Han
    Wang, Fan
    Liu, Lijun
    2019 1ST INTERNATIONAL CONFERENCE ON INDUSTRIAL ARTIFICIAL INTELLIGENCE (IAI 2019), 2019,
  • [50] Ultrasound Image Beamforming Optimization Using a Generative Adversarial Network
    Seoni, Silvia
    Salvi, Massimo
    Matrone, Giulia
    Meiburger, Kristen M.
    2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS), 2022,