Panoramic Radiograph Generation and Image Reconstruction from Latent Vectors Using a Generative Adversarial Network

被引:0
|
作者
Kokomoto, Kazuma [1 ]
Okawa, Rena [2 ]
Nakano, Kazuhiko [2 ]
Nozaki, Kazunori [1 ]
机构
[1] Osaka Univ, Div Med Informat, Dent Hosp, Osaka, Japan
[2] Osaka Univ, Dept Pediat Dent, Grad Sch Dent, Osaka, Japan
来源
MEDINFO 2023 - THE FUTURE IS ACCESSIBLE | 2024年 / 310卷
关键词
Generative adversarial network; anonymization; deep learning; dentistry;
D O I
10.3233/SHTI231263
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, StyleGAN2 was trained with panoramic radiographs, and original images were projected into the latent space of StyleGAN2. The resulting latent vectors were input into StyleGAN2, and corresponding images were generated to reconstruct the original images. The original and reconstructed images were evaluated by pediatric dentists and found to be similar. Our results suggest that StyleGAN2 could be applied to the anonymization and data compression of medical images.
引用
收藏
页码:1499 / 1500
页数:2
相关论文
共 50 条
  • [1] Refinement of image quality in panoramic radiography using a generative adversarial network
    Kim, Hak-Sun
    Ha, Eun-Gyu
    Lee, Ari
    Choi, Yoon Joo
    Jeon, Kug Jin
    Han, Sang- Sun
    Lee, Chena
    DENTOMAXILLOFACIAL RADIOLOGY, 2023, 52 (05)
  • [2] Generation of High-Quality Image Using Generative Adversarial Network
    Sun, Yitao
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [3] Image Generation Using Different Models Of Generative Adversarial Network
    Al-qerem, Ahmad
    Alsalman, Yasmeen Shaher
    Mansour, Khalid
    2019 INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2019, : 241 - 245
  • [4] Image Super-Resolution Reconstruction Based on a Generative Adversarial Network
    Wu, Yun
    Lan, Lin
    Long, Huiyun
    Kong, Guangqian
    Duan, Xun
    Xu, Changzhuan
    IEEE ACCESS, 2020, 8 : 215133 - 215144
  • [5] Face Reconstruction with Generative Adversarial Network
    Putra, Dino Hariatma
    Basaruddin, T.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING (ICMLSC 2019), 2019, : 181 - 185
  • [6] Multistage Evolutionary Generative Adversarial Network for Image Generation
    Zhang, Xiu
    Sun, Baiwei
    Zhang, Xin
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (03) : 5483 - 5492
  • [7] Generative adversarial network for image deblurring using generative adversarial constraint loss
    Ji, Y.
    Dai, Y.
    Zhao, K.
    Li, S.
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 1180 - 1187
  • [8] Image Denoising Using A Generative Adversarial Network
    Alsaiari, Abeer
    Rustagi, Ridhi
    Alhakamy, A'eshah
    Thomas, Manu Mathew
    Forbes, Angus G.
    2019 IEEE 2ND INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTER TECHNOLOGIES (ICICT), 2019, : 126 - 132
  • [9] Image Captioning with Generative Adversarial Network
    Amirian, Soheyla
    Rasheed, Khaled
    Taha, Thiab R.
    Arabnia, Hamid R.
    2019 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2019), 2019, : 272 - 275
  • [10] Generative adversarial network based regularized image reconstruction for PET
    Xie, Zhaoheng
    Baikejiang, Reheman
    Li, Tiantian
    Zhang, Xuezhu
    Gong, Kuang
    Zhang, Mengxi
    Qi, Wenyuan
    Asma, Evren
    Qi, Jinyi
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (12)