The physical basis for solvent flow in organic solvent nanofiltration

被引:24
作者
Fan, Hanqing [1 ]
He, Jinlong [2 ]
Heiranian, Mohammad [1 ,3 ]
Pan, Weiyi [1 ]
Li, Ying [2 ]
Elimelech, Menachem [1 ]
机构
[1] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520 USA
[2] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA
[3] North Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27606 USA
关键词
REFRACTIVE-INDEXES; TERNARY MIXTURES; FORCE-FIELD; TRANSPORT; MEMBRANES; DYNAMICS; VISCOSITIES; SIMULATION; DIFFUSION; DENSITIES;
D O I
10.1126/sciadv.ado4332
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Organic solvent nanofiltration (OSN) is an emerging membrane technology that could revolutionize chemical separations in numerous vital industries. Despite its significance, there remains a lack of fundamental understanding of solvent transport mechanisms in OSN membranes. Here, we use an extended Flory-Rehner theory, nonequilibrium molecular dynamic simulations, and organic solvent transport experiments to demonstrate that solvent flow in OSN membranes is driven by a pressure gradient. We show that solvent molecules migrate as clusters through interconnected pathways within the membrane pore structure, challenging the widely accepted diffusion-based view of solvent transport in OSN. We further reveal that solvent permeance is dependent on solvent affinity to the OSN membrane, which, in turn, controls the membrane pore structure. Our fundamental insights lay the scientific groundwork for the development of next-generation OSN membranes.
引用
收藏
页数:9
相关论文
共 53 条
[41]   Solvent flux through dense polymeric nanofiltration membranes [J].
Robinson, JP ;
Tarleton, ES ;
Millington, CR ;
Nijmeijer, A .
JOURNAL OF MEMBRANE SCIENCE, 2004, 230 (1-2) :29-37
[42]  
Sahimi M., 2011, FLOW TRANSPORT POROU, DOI DOI 10.1002/9783527636693
[43]   Materials Informatics with PoreBlazer v4.0 and the CSD MOF Database [J].
Sarkisov, Lev ;
Bueno-Perez, Rocio ;
Sutharson, Mythili ;
Fairen-Jimenez, David .
CHEMISTRY OF MATERIALS, 2020, 32 (23) :9849-9867
[44]   Dynamics of water and solute transport in polymeric reverse osmosis membranes via molecular dynamics simulations [J].
Shen, Meng ;
Keten, Sinan ;
Lueptow, Richard M. .
JOURNAL OF MEMBRANE SCIENCE, 2016, 506 :95-108
[45]   AN AB-INITIO CFF93 ALL-ATOM FORCE-FIELD FOR POLYCARBONATES [J].
SUN, H ;
MUMBY, SJ ;
MAPLE, JR ;
HAGLER, AT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (07) :2978-2987
[46]   AB-INITIO CALCULATIONS AND FORCE-FIELD DEVELOPMENT FOR COMPUTER-SIMULATION OF POLYSILANES [J].
SUN, H .
MACROMOLECULES, 1995, 28 (03) :701-712
[47]   Organic molecular sieve membranes for chemical separations [J].
Wang, Hongjian ;
Wang, Meidi ;
Liang, Xu ;
Yuan, Jinqiu ;
Yang, Hao ;
Wang, Shaoyu ;
Ren, Yanxiong ;
Wu, Hong ;
Pan, Fusheng ;
Jiang, Zhongyi .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (09) :5468-5516
[48]   Water transport in reverse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism [J].
Wang, Li ;
He, Jinlong ;
Heiranian, Mohammad ;
Fan, Hanqing ;
Song, Lianfa ;
Li, Ying ;
Elimelech, Menachem .
SCIENCE ADVANCES, 2023, 9 (15)
[49]   FLOW IN POROUS-MEDIA .1. A THEORETICAL DERIVATION OF DARCYS-LAW [J].
WHITAKER, S .
TRANSPORT IN POROUS MEDIA, 1986, 1 (01) :3-25
[50]   Development of large-scale applications in organic solvent nanofiltration and pervaporation for chemical and refining processes [J].
White, Lloyd S. .
JOURNAL OF MEMBRANE SCIENCE, 2006, 286 (1-2) :26-35