The physical basis for solvent flow in organic solvent nanofiltration

被引:12
作者
Fan, Hanqing [1 ]
He, Jinlong [2 ]
Heiranian, Mohammad [1 ,3 ]
Pan, Weiyi [1 ]
Li, Ying [2 ]
Elimelech, Menachem [1 ]
机构
[1] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520 USA
[2] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA
[3] North Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27606 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 24期
关键词
REFRACTIVE-INDEXES; TERNARY MIXTURES; FORCE-FIELD; TRANSPORT; MEMBRANES; DYNAMICS; VISCOSITIES; SIMULATION; DIFFUSION; DENSITIES;
D O I
10.1126/sciadv.ado4332
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Organic solvent nanofiltration (OSN) is an emerging membrane technology that could revolutionize chemical separations in numerous vital industries. Despite its significance, there remains a lack of fundamental understanding of solvent transport mechanisms in OSN membranes. Here, we use an extended Flory-Rehner theory, nonequilibrium molecular dynamic simulations, and organic solvent transport experiments to demonstrate that solvent flow in OSN membranes is driven by a pressure gradient. We show that solvent molecules migrate as clusters through interconnected pathways within the membrane pore structure, challenging the widely accepted diffusion-based view of solvent transport in OSN. We further reveal that solvent permeance is dependent on solvent affinity to the OSN membrane, which, in turn, controls the membrane pore structure. Our fundamental insights lay the scientific groundwork for the development of next-generation OSN membranes.
引用
收藏
页数:9
相关论文
共 53 条
  • [1] Size of the Dynamic Bead in Polymers
    Agapov, A.
    Sokolov, A. P.
    [J]. MACROMOLECULES, 2010, 43 (21) : 9126 - 9130
  • [2] [Anonymous], 2019, A research agenda for transforming separation science, Consensus study report of the National Academies of Sciences, Engineering, Medicine The National Academies Press
  • [3] Organic Solvent Nanofiltration in Pharmaceutical Industry
    Buonomenna, M. G.
    Bae, J.
    [J]. SEPARATION AND PURIFICATION REVIEWS, 2015, 44 (02) : 157 - 182
  • [4] EQUATION OF STATE FOR NONATTRACTING RIGID SPHERES
    CARNAHAN, NF
    STARLING, KE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (02) : 635 - &
  • [5] Densities, viscosities, and refractive indices for binary and ternary mixtures of acetone, ethanol, and 2,2,4-trimethylpentane
    Chen, HW
    Tu, CH
    [J]. JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2005, 50 (04) : 1262 - 1269
  • [6] On the structure and rejection of ions by a polyamide membrane in pressure-driven molecular dynamics simulations
    Ding, Minxia
    Szymczyk, Anthony
    Ghoufi, Aziz
    [J]. DESALINATION, 2015, 368 : 76 - 80
  • [7] Theory of expansion and compression of polymeric materials: Implications for membrane solvent flow under compaction
    Fan, Hanqing
    Elimelech, Menachem
    Biesheuvel, P. M.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2024, 697
  • [8] Critical Knowledge Gaps in Mass Transport through Single-Digit Nanopores: A Review and Perspective
    Faucher, Samuel
    Aluru, Narayana
    Bazant, Martin Z.
    Blankschtein, Daniel
    Brozena, Alexandra H.
    Cumings, John
    de Souza, J. Pedro
    Elimelech, Menachem
    Epsztein, Razi
    Fourkas, John T.
    Rajan, Ananth Govind
    Kulik, Heather J.
    Levy, Amir
    Majumdar, Arun
    Martin, Charles
    McEldrew, Michael
    Misra, Rahul Prasanna
    Noy, Aleksandr
    Tuan Anh Pham
    Reed, Mark
    Schwegler, Eric
    Siwy, Zuzanna
    Wang, YuHuang
    Strano, Michael
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (35) : 21309 - 21326
  • [9] Swelling of crosslinked polydimethylsiloxane networks by pure solvents: Influence of temperature
    Favre, E
    [J]. EUROPEAN POLYMER JOURNAL, 1996, 32 (10) : 1183 - 1188
  • [10] Thermodynamics of high polymer solutions
    Flory, PJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1942, 10 (01) : 51 - 61