Revisiting Local Computation of PageRank: Simple and Optimal

被引:0
作者
Wang, Hanzhi [1 ]
Wei, Zhewei [1 ]
Wen, Ji-Rong [1 ]
Yang, Mingji [1 ]
机构
[1] Renmin Univ China, Beijing, Peoples R China
来源
PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024 | 2024年
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
graph algorithms; sublinear algorithms; PageRank; random walks; PERSONALIZED PAGERANK; ALGORITHMS;
D O I
10.1145/3618260.3649661
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We revisit ApproxContributions, the classic local graph exploration algorithm proposed by Andersen, Borgs, Chayes, Hopcroft, Mirrokni, and Teng (WAW 07, Internet Math. 08) for computing an epsilon-approximation of the PageRank contribution vector for a target node t on a graph with n nodes and m edges. We give a worst-case complexity bound of it as O(n Pi(t)/epsilon center dot min(Delta(in),Delta(out),root m)), where Pi(t) is the PageRank score of t, and Delta(in) and Delta(out) are the maximum in-degree and out-degree of the graph, resp. We also give a lower bound of Omega(min(Delta(in)/delta,Delta(out)/delta,root m/delta,m)) for detecting ts delta-contributing set, showing that the simple ApproxContributions algorithm is already optimal. As ApproxContributions has become a cornerstone for computing random-walk probabilities, our results and techniques can be applied to derive better bounds for various relevant problems. In particular, we investigate the computational complexity of locally estimating a nodes PageRank centrality. We improve the best-known upper bound of (O) over tilde (n(2/3)center dot min(Delta(1/3)(out),m(1/6))) given by Bressan, Peserico, and Pretto (SICOMP 23) to O(n(1/2)center dot min(Delta(1/2)(in),Delta(1/2)(out),m(1/4))) by combining ApproxContributions with Monte Carlo sampling. We also improve their lower bound of Omega(min(n(1/2)Delta(1/2)(out),n(1/3)m(1/3))) to Omega(n(1/2)center dot min(Delta(1/2)(in),Delta(1/2)(out),m(1/4))) if min(Delta(in),Delta(out))=Omega(n(1/3)), and to Omega(n(1/2-gamma)(min(Delta(in),Delta(out)))(1/2+gamma)) otherwise, where gamma > 0 is an arbitrarily small constant. Our matching upper and lower bounds resolve the open problem of whether one can tighten the bounds given by Bressan, Peserico, and Pretto (FOCS 18, SICOMP 23). Remarkably, the techniques and analyses for proving all our results are surprisingly simple.
引用
收藏
页码:911 / 922
页数:12
相关论文
共 52 条
  • [41] GRAPH SPARSIFICATION BY EFFECTIVE RESISTANCES
    Spielman, Daniel A.
    Srivastava, Nikhil
    [J]. SIAM JOURNAL ON COMPUTING, 2011, 40 (06) : 1913 - 1926
  • [42] Wang HZ, 2024, Arxiv, DOI [arXiv:2403.12648, 10.48550/arXiv.2403.12648, DOI 10.48550/ARXIV.2403.12648]
  • [43] Estimating Single -Node PageRank in (O)over-tilde (min{dt, √m}) Time
    Wang, Hanzhi
    Wei, Zhewei
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 16 (11): : 2949 - 2961
  • [44] Approximate Graph Propagation
    Wang, Hanzhi
    He, Mingguo
    Wei, Zhewei
    Wang, Sibo
    Yuan, Ye
    Du, Xiaoyong
    Wen, Ji-Rong
    [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1686 - 1696
  • [45] Personalized PageRank to a Target Node, Revisited
    Wang, Hanzhi
    Wei, Zhewei
    Gan, Junhao
    Wang, Sibo
    Huang, Zengfeng
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 657 - 667
  • [46] Efficient Algorithms for Finding Approximate Heavy Hitters in Personalized PageRanks
    Wang, Sibo
    Tao, Yufei
    [J]. SIGMOD'18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2018, : 1113 - 1127
  • [47] Wang SB, 2016, PROC VLDB ENDOW, V10, P205
  • [48] PRSim: Sublinear Time SimRank Computation on Large Power-Law Graphs
    Wei, Zhewei
    He, Xiaodong
    Xiao, Xiaokui
    Wang, Sibo
    Liu, Yu
    Du, Xiaoyong
    Wen, Ji-Rong
    [J]. SIGMOD '19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2019, : 1042 - 1059
  • [49] TopPPR: Top-k Personalized PageRank Queries with Precision Guarantees on Large Graphs
    Wei, Zhewei
    He, Xiaodong
    Xiao, Xiaokui
    Wang, Sibo
    Shang, Shuo
    Wen, Ji-Rong
    [J]. SIGMOD'18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2018, : 441 - 456
  • [50] Scalable Graph Embeddings via Sparse Transpose Proximities
    Yin, Yuan
    Wei, Zhewei
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1429 - 1437