Revisiting Local Computation of PageRank: Simple and Optimal

被引:0
作者
Wang, Hanzhi [1 ]
Wei, Zhewei [1 ]
Wen, Ji-Rong [1 ]
Yang, Mingji [1 ]
机构
[1] Renmin Univ China, Beijing, Peoples R China
来源
PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024 | 2024年
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
graph algorithms; sublinear algorithms; PageRank; random walks; PERSONALIZED PAGERANK; ALGORITHMS;
D O I
10.1145/3618260.3649661
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We revisit ApproxContributions, the classic local graph exploration algorithm proposed by Andersen, Borgs, Chayes, Hopcroft, Mirrokni, and Teng (WAW 07, Internet Math. 08) for computing an epsilon-approximation of the PageRank contribution vector for a target node t on a graph with n nodes and m edges. We give a worst-case complexity bound of it as O(n Pi(t)/epsilon center dot min(Delta(in),Delta(out),root m)), where Pi(t) is the PageRank score of t, and Delta(in) and Delta(out) are the maximum in-degree and out-degree of the graph, resp. We also give a lower bound of Omega(min(Delta(in)/delta,Delta(out)/delta,root m/delta,m)) for detecting ts delta-contributing set, showing that the simple ApproxContributions algorithm is already optimal. As ApproxContributions has become a cornerstone for computing random-walk probabilities, our results and techniques can be applied to derive better bounds for various relevant problems. In particular, we investigate the computational complexity of locally estimating a nodes PageRank centrality. We improve the best-known upper bound of (O) over tilde (n(2/3)center dot min(Delta(1/3)(out),m(1/6))) given by Bressan, Peserico, and Pretto (SICOMP 23) to O(n(1/2)center dot min(Delta(1/2)(in),Delta(1/2)(out),m(1/4))) by combining ApproxContributions with Monte Carlo sampling. We also improve their lower bound of Omega(min(n(1/2)Delta(1/2)(out),n(1/3)m(1/3))) to Omega(n(1/2)center dot min(Delta(1/2)(in),Delta(1/2)(out),m(1/4))) if min(Delta(in),Delta(out))=Omega(n(1/3)), and to Omega(n(1/2-gamma)(min(Delta(in),Delta(out)))(1/2+gamma)) otherwise, where gamma > 0 is an arbitrarily small constant. Our matching upper and lower bounds resolve the open problem of whether one can tighten the bounds given by Bressan, Peserico, and Pretto (FOCS 18, SICOMP 23). Remarkably, the techniques and analyses for proving all our results are surprisingly simple.
引用
收藏
页码:911 / 922
页数:12
相关论文
共 52 条
  • [1] Andersen R., 2008, PROC 4 INT WORKSHOP, P69, DOI DOI 10.1145/1451983.1452000
  • [2] Andersen R, 2007, LECT NOTES COMPUT SC, V4863, P150
  • [3] Andersen R, 2006, ANN IEEE SYMP FOUND, P475
  • [4] Local Computation of PageRank Contributions
    Andersen, Reid
    Borgs, Christian
    Chayes, Jennifer
    Hopcroft, John
    Mirrokni, Vahab
    Teng, Shang-Hua
    [J]. INTERNET MATHEMATICS, 2008, 5 (1-2) : 23 - 45
  • [5] Using PageRank to Locally Partition a Graph
    Andersen, Reid
    Chung, Fan
    Lang, Kevin
    [J]. INTERNET MATHEMATICS, 2007, 4 (01) : 35 - 64
  • [6] [Anonymous], 2008, P 17 ACM INT C INF K, DOI [DOI 10.1145/1458082.1458122, 10.1145/1458082.1458122]
  • [7] Monte Carlo methods in pagerank computation: When one iteration is sufficient
    Avrachenkov, K.
    Litvak, N.
    Nemirovsky, D.
    Osipova, N.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) : 890 - 904
  • [8] Banerjee S, 2015, ADV NEUR IN, V28
  • [9] Scaling Graph Neural Networks with Approximate PageRank
    Bojchevski, Aleksandar
    Klicpera, Johannes
    Perozzi, Bryan
    Kapoor, Amol
    Blais, Martin
    Rozemberczki, Benedek
    Lukasik, Michal
    Guennemann, Stephan
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 2464 - 2473
  • [10] Borgs Christian, 2012, Algorithms and Models for the Web Graph. Proceedings 9th International Workshop, WAW 2012, P41, DOI 10.1007/978-3-642-30541-2_4