Co-pyrolysis of biomass woodchips with Ca-rich oil shale fuel in a continuous feed reactor

被引:0
|
作者
Ceron, Alejandro Lyons [1 ]
Pihu, Tonu [1 ]
Konist, Alar [1 ]
机构
[1] Tallinn Univ Technol, Dept Energy Technol, Ehitajate Tee 5, EE-19086 Tallinn, Estonia
关键词
thermochemical conversion; co-pyrolysis; continuous feed reactor; oil shale; woodchips; BIO-OIL; INTERMEDIATE PYROLYSIS; SLOW PYROLYSIS; WOODY BIOMASS; PINE SAWDUST; TEMPERATURE; PRODUCTS; COPYROLYSIS; LIQUID; YIELD;
D O I
10.3176/oil.2024.3.04
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A co-pyrolysis of woodchips and oil shale was conducted in a continuous reactor at 520 degrees C in a CO2 2 atmosphere. Experimental product yields were derived and an analysis of the liquid products was conducted, using gas chromatography, infrared spectroscopy, and physicochemical analysis. A maximum yield of liquids and gases was obtained as the share of biomass increased (43.9 and 35.1 wt%, respectively). Product characterization confirmed additive behavior in co-pyrolysis. The liquid products from co- pyrolysis blends exhibited fewer oxygenated compounds, derived from biomass, and fewer aromatic compounds, derived from oil shale. Co-pyrolysis liquids contained abundant aliphatic hydrocarbons (C6 6 to C11). 11 ).
引用
收藏
页码:208 / 235
页数:28
相关论文
共 50 条
  • [41] Valorizing polymeric wastes and biomass through optimized co-pyrolysis for upgraded pyrolysis oil: A study on TG-FTIR and fixed bed reactor
    Rajput, Gulzeb
    Liu, Bin
    Pan, Minhui
    Kumar, Akash
    Kumari, Lata
    Farooq, Muhammad Zohaib
    Li, Dan
    Lin, Fawei
    Ma, Wenchao
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 182
  • [42] Debromination and improved phenol content in fuel oil generated from co-pyrolysis of non-metallic PCB and biomass
    Prajapati, Sonalben B.
    Gautam, Alok
    Gautam, Shina
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (16) : 14713 - 14729
  • [43] Fast co-pyrolysis of low density polyethylene and biomass residue for oil production
    Yang, Jingxuan
    Rizkiana, Jenny
    Widayatno, Wahyu Bambang
    Karnjanakom, Surachai
    Kaewpanha, Malinee
    Hao, Xiaogang
    Abudula, Abuliti
    Guan, Guoqing
    ENERGY CONVERSION AND MANAGEMENT, 2016, 120 : 422 - 429
  • [44] Co-pyrolysis of biomass and coal blend by TG and in a free fall reactor
    Cui Quan
    Shaoping Xu
    Yi An
    Xiaolong Liu
    Journal of Thermal Analysis and Calorimetry, 2014, 117 : 817 - 823
  • [45] Characterization of Zhundong lignite and biomass co-pyrolysis in a thermogravimetric analyzer and a fixed bed reactor
    Guo, Feiqiang
    Li, Xiaolei
    Wang, Yan
    Liu, Yuan
    Li, Tiantao
    Guo, Chenglong
    ENERGY, 2017, 141 : 2154 - 2163
  • [46] Co-pyrolysis of biomass and coal blend by TG and in a free fall reactor
    Quan, Cui
    Xu, Shaoping
    An, Yi
    Liu, Xiaolong
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 117 (02) : 817 - 823
  • [47] Fast co-pyrolysis of sewage sludge and lignocellulosic biomass in a conical spouted bed reactor
    Alvarez, Jon
    Amutio, Maider
    Lopez, Gartzen
    Bilbao, Javier
    Olazar, Martin
    FUEL, 2015, 159 : 810 - 818
  • [48] Study on characteristics of co-pyrolysis of biomass and oil-based drill cuttings from shale gas development
    Zhou, Boxun
    Sanjrani, Manzoor
    Zhang, Shici
    Diao, Hongli
    Wang, Yanyun
    Huang, Siyu
    Liu, Qi
    Xia, Shibin
    DESALINATION AND WATER TREATMENT, 2020, 205 : 139 - 152
  • [49] Fast co-pyrolysis of coal and biomass in a fluidized-bed reactor
    Wang, Jianfei
    Yan, Qixuan
    Zhao, Jiantao
    Wang, Zhiqing
    Huang, Jiejie
    Gao, Songping
    Song, Shuangshuang
    Fang, Yitian
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 118 (03) : 1663 - 1673
  • [50] Effects of feedstock on co-pyrolysis of biomass and coal in a free fall reactor
    Wei L.-G.
    Zhang L.
    Xu S.-P.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2011, 39 (10): : 728 - 734