Co-pyrolysis of biomass woodchips with Ca-rich oil shale fuel in a continuous feed reactor

被引:0
|
作者
Ceron, Alejandro Lyons [1 ]
Pihu, Tonu [1 ]
Konist, Alar [1 ]
机构
[1] Tallinn Univ Technol, Dept Energy Technol, Ehitajate Tee 5, EE-19086 Tallinn, Estonia
关键词
thermochemical conversion; co-pyrolysis; continuous feed reactor; oil shale; woodchips; BIO-OIL; INTERMEDIATE PYROLYSIS; SLOW PYROLYSIS; WOODY BIOMASS; PINE SAWDUST; TEMPERATURE; PRODUCTS; COPYROLYSIS; LIQUID; YIELD;
D O I
10.3176/oil.2024.3.04
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A co-pyrolysis of woodchips and oil shale was conducted in a continuous reactor at 520 degrees C in a CO2 2 atmosphere. Experimental product yields were derived and an analysis of the liquid products was conducted, using gas chromatography, infrared spectroscopy, and physicochemical analysis. A maximum yield of liquids and gases was obtained as the share of biomass increased (43.9 and 35.1 wt%, respectively). Product characterization confirmed additive behavior in co-pyrolysis. The liquid products from co- pyrolysis blends exhibited fewer oxygenated compounds, derived from biomass, and fewer aromatic compounds, derived from oil shale. Co-pyrolysis liquids contained abundant aliphatic hydrocarbons (C6 6 to C11). 11 ).
引用
收藏
页码:208 / 235
页数:28
相关论文
共 50 条
  • [21] The synergistic effect of co-pyrolysis of oil shale and low density polyethylene mixtures and characterization of pyrolysis liquid
    Bozkurt, Pinar Acar
    Tosun, Onur
    Canel, Muammer
    JOURNAL OF THE ENERGY INSTITUTE, 2017, 90 (03) : 355 - 362
  • [22] Co-pyrolysis of biomass and coal in a free fall reactor
    Zhang, Li
    Xu, Shaoping
    Zhao, Wei
    Liu, Shuqin
    FUEL, 2007, 86 (03) : 353 - 359
  • [23] Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor
    Yang, Xiao
    Yuan, Chengyong
    Xu, Jiao
    Zhang, Weijiang
    BIORESOURCE TECHNOLOGY, 2014, 173 : 1 - 5
  • [24] The synergistic effect of co-pyrolysis of oil shale and microalgae to produce syngas
    Hu, Zhifeng
    Ma, Xiaoqian
    Li, Longjun
    JOURNAL OF THE ENERGY INSTITUTE, 2016, 89 (03) : 447 - 455
  • [25] A TG-FTIR investigation to the co-pyrolysis of oil shale with coal
    Li, Shuangshuang
    Ma, Xiaoqian
    Liu, Guicai
    Guo, Mingxuan
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2016, 120 : 540 - 548
  • [26] A study on machine learning prediction of bio-oil yield from biomass and plastic Co-pyrolysis
    Zhao, Chenxi
    Xia, Qi
    Wang, Siyu
    Lu, Xueying
    Yue, Wenjing
    Chen, Aihui
    Chen, Juhui
    JOURNAL OF THE ENERGY INSTITUTE, 2025, 120
  • [27] Mineral matter effect on the decomposition of Ca-rich oil shale
    Maaten, Birgit
    Loo, Lauri
    Konist, Alar
    Siirde, Andres
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2018, 131 (03) : 2087 - 2091
  • [28] Mineral matter effect on the decomposition of Ca-rich oil shale
    Birgit Maaten
    Lauri Loo
    Alar Konist
    Andres Siirde
    Journal of Thermal Analysis and Calorimetry, 2018, 131 : 2087 - 2091
  • [29] Studies of fast co-pyrolysis of oil shale and wood in a bubbling fluidized bed
    Chen, Bin
    Han, Xiangxin
    Tong, Jianhui
    Mu, Mao
    Jiang, Xiumin
    Wang, Sha
    Shen, Jun
    Ye, Xiao
    ENERGY CONVERSION AND MANAGEMENT, 2020, 205
  • [30] Simultaneously remove organic pollutants and improve pyrolysis gas quality during the co-pyrolysis of soybean straw and oil shale
    Xian, Shengxian
    Xu, Qing
    Feng, Yaoxun
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 167