Ensemble clustering via synchronized relabelling

被引:0
|
作者
Alziati, Michele [1 ]
Amaru, Fiore [1 ]
Magri, Luca [1 ]
Arrigoni, Federica [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz Bioingn, Via Ponzio 34-5, I-20133 Milan, Italy
关键词
Ensemble clustering; Relabelling and voting; Permutation synchronization; RECOGNITION;
D O I
10.1016/j.patrec.2024.06.026
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ensemble clustering is an important problem in unsupervised learning that aims at aggregating multiple noisy partitions into a unique clustering solution. It can be formulated in terms of relabelling and voting, where relabelling refers to the task of finding optimal permutations that bring coherence among labels in input partitions. In this paper we propose a novel solution to the relabelling problem based on permutation synchronization. By effectively circumventing the need for a reference clustering, our method achieves superior performance than previous work under varying assumptions and scenarios, demonstrating its capability to handle diverse and complex datasets.
引用
收藏
页码:176 / 182
页数:7
相关论文
共 50 条
  • [21] Unsupervised ensemble minority clustering
    Edgar Gonzàlez
    Jordi Turmo
    Machine Learning, 2015, 98 : 217 - 268
  • [22] Unsupervised ensemble minority clustering
    Gonzalez, Edgar
    Turmo, Jordi
    MACHINE LEARNING, 2015, 98 (1-2) : 217 - 268
  • [23] Locally Weighted Ensemble Clustering
    Huang, Dong
    Wang, Chang-Dong
    Lai, Jian-Huang
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (05) : 1460 - 1473
  • [24] Ensemble Learning for Spectral Clustering
    Li, Hongmin
    Ye, Xiucai
    Imakura, Akira
    Sakurai, Tetsuya
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 1094 - 1099
  • [25] Infinite Ensemble for Image Clustering
    Liu, Hongfu
    Shao, Ming
    Li, Sheng
    Fu, Yun
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1745 - 1754
  • [26] Robust Spectral Ensemble Clustering
    Tao, Zhiqiang
    Liu, Hongfu
    Li, Sheng
    Fu, Yun
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 367 - 376
  • [27] Ensemble Clustering With Attentional Representation
    Hao, Zhezheng
    Lu, Zhoumin
    Li, Guoxu
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (02) : 581 - 593
  • [28] Marginalized Multiview Ensemble Clustering
    Tao, Zhiqiang
    Liu, Hongfu
    Li, Sheng
    Ding, Zhengming
    Fu, Yun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (02) : 600 - 611
  • [29] Scalable spectral ensemble clustering via building representative co-association matrix
    Liang, Yinian
    Ren, Zhigang
    Wu, Zongze
    Zeng, Deyu
    Li, Jianzhong
    NEUROCOMPUTING, 2020, 390 : 158 - 167
  • [30] PCS-granularity weighted ensemble clustering via Co-association matrix
    Zhishan Wu
    Mingjie Cai
    Feng Xu
    Qingguo Li
    Applied Intelligence, 2024, 54 : 3884 - 3901