Stability of pulsating fronts for bistable reaction-diffusion equations in spatially periodic media

被引:0
|
作者
Shi, Yajun [1 ]
Li, Linlin [2 ]
机构
[1] Tongji Univ, Sch Math Sci, Shanghai, Peoples R China
[2] Univ Shanghai Sci & Technol, Coll Sci, Shanghai, Peoples R China
关键词
Spatially periodic; Reaction -diffusion equations; Asymptotic stability; Exterior domains; TRAVELING-WAVES; ALLEN-CAHN; EXISTENCE; NONEXISTENCE; MODEL;
D O I
10.1016/j.jmaa.2024.128516
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first part of the paper is concerned with the asymptotic stability of pulsating fronts in R N for spatially periodic bistable reaction-diffusion equations with respect to decaying perturbations. Precisely, we show that the solution u ( t, x ) of the initial value problem converges to the pulsating front as t -> + infinity uniformly in R N . In the second part, we investigate the existence and asymptotic behavior of the entire solution u ( t, x ) emanating from a pulsating front for the equation in exterior domains. The proof of the asymptotic behavior is relying on the application of the proof for the stability of the pulsating front. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Bistable Pulsating Fronts for Reaction-Diffusion Equations in a Periodic Habitat
    Ding, Weiwei
    Hamel, Francois
    Zhao, Xiao-Qiang
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2017, 66 (04) : 1189 - 1265
  • [2] Curved Fronts of Bistable Reaction-Diffusion Equations in Spatially Periodic Media
    Guo, Hongjun
    Li, Wan-Tong
    Liu, Rongsong
    Wang, Zhi-Cheng
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 242 (03) : 1571 - 1627
  • [3] Pulsating Fronts of Spatially Periodic Bistable Reaction-Diffusion Equations Around an Obstacle
    Jia, Fu-Jie
    Sheng, Wei-Jie
    Wang, Zhi-Cheng
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (01)
  • [4] Continuity of pulsating wave speeds for bistable reaction-diffusion equations in spatially periodic media
    Ding, Weiwei
    Liang, Zhanghua
    Liu, Wenfeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (01)
  • [5] Pulsating fronts for bistable on average reaction-diffusion equations in a time periodic environment
    Contri, Benjamin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (01) : 90 - 132
  • [6] Transition fronts for periodic bistable reaction-diffusion equations
    Ding, Weiwei
    Hamel, Francois
    Zhao, Xiao-Qiang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 2517 - 2551
  • [7] Transition Fronts of Combustion Reaction Diffusion Equations in Spatially Periodic Media
    Zhang, Suobing
    Wang, Zhi-Cheng
    Jia, Fu-Jie
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (04)
  • [8] Admissible speeds in spatially periodic bistable reaction-diffusion equations
    Ding, Weiwei
    Giletti, Thomas
    ADVANCES IN MATHEMATICS, 2021, 389
  • [9] Transition fronts of time periodic bistable reaction-diffusion equations in RN
    Sheng, Wei-Jie
    Guo, Hong-Jun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (05) : 2191 - 2242
  • [10] Uniqueness of monostable pulsating wave fronts for time periodic reaction-diffusion equations
    Zhang, Ping-An
    Li, Wan-Tong
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (03) : 1300 - 1305