Gallium Cluster-Promoted In2O3 Catalyst for CO2 Hydrogenation to Methanol

被引:8
|
作者
Yang, Yuxiang [1 ,2 ]
Wu, Linlin [1 ]
Yao, Bingqing [3 ]
Zhang, Lei [2 ]
Jung, Munam [2 ]
He, Qian [3 ]
Yan, Ning [2 ]
Liu, Chang-Jun [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300350, Peoples R China
[2] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore
[3] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117575, Singapore
来源
ACS CATALYSIS | 2024年 / 14卷 / 18期
关键词
gallium; CO2; hydrogenation; methanol; indium oxide; interface site; FINDING SADDLE-POINTS; SELECTIVE HYDROGENATION; INFRARED-SPECTRUM; INDIUM OXIDE; MECHANISM; SITE;
D O I
10.1021/acscatal.4c03045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, highly dispersed gallium clusters are constructed on In2O3 (denoted as Ga/In2O3) to promote hydrogenation of CO2 to methanol. Compared to pristine In2O3, the Ga/In2O3 catalysts show markedly improved CO2 conversion and methanol space-time yield (STY), as well as enhanced stability over 60 h on stream. A strong electronic interaction between the loaded gallium and In2O3 support, as confirmed by multiple techniques, results in well-dispersed, stable gallium clusters on In2O3, which is beneficial to long-term performance. The interface between gallium clusters and the defective In2O3 support serves as active sites to facilitate the activation of H-2 and CO2. This interfacial synergy not only enhances the adsorption and dissociation of H-2 but also effectively inhibits the strong adsorption of CO2 as carbonate. The activated CO2 at the interface sites can be dissociated readily into adsorbed CO for further hydrogenation into methanol.
引用
收藏
页码:13958 / 13972
页数:15
相关论文
共 50 条
  • [31] Density functional theoretical study of the tungsten-doped In2O3 catalyst for CO2 hydrogenation to methanol
    Zou, Rui
    Sun, Kaihang
    Shen, Chenyang
    Liu, Chang-Jun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (41) : 25522 - 25529
  • [32] A Highly Active Au/In2O3-ZrO2 Catalyst for Selective Hydrogenation of CO2 to Methanol
    Lu, Zhe
    Sun, Kaihang
    Wang, Jing
    Zhang, Zhitao
    Liu, Changjun
    CATALYSTS, 2020, 10 (11) : 1 - 10
  • [33] CO2 Hydrogenation to Methanol over In2O3: The Size Effect
    Wu, Linlin
    Zou, Rui
    Shen, Chenyang
    Liu, Chang-jun
    ENERGY & FUELS, 2023, 37 (23) : 18120 - 18127
  • [34] Redox-Mediated Interfacial Restructuring of Supported In2O3 to Drive CO2 Hydrogenation to Methanol
    Gao, Feifan
    Wang, Yuxin
    Zhao, Yudong
    Wang, Kaizhi
    Guo, Wendi
    Sun, Zehui
    Zhu, Yifeng
    He, Heyong
    Liu, Yongmei
    Cao, Yong
    ACS CATALYSIS, 2025, 15 (04): : 2785 - 2795
  • [35] In situ DRIFTS and DFT study of CO2 hydrogenation over the In2O3 catalyst
    Zou, Rui
    Liu, Menghui
    Shen, Chenyang
    Sun, Kaihang
    Liu, Chang-jun
    CHEMICAL COMMUNICATIONS, 2024, 60 (14) : 1872 - 1875
  • [36] Performance and Stability of Corundum-type In2O3 Catalyst for Carbon Dioxide Hydrogenation to Methanol
    Gili, Albert
    Broesigke, Georg
    Javed, Mudassar
    Dal Molin, Emiliano
    Isbruecker, Philipp
    Repke, Jens-Uwe
    Hess, Franziska
    Gurlo, Aleksander
    Schomaecker, Reinhard
    Bekheet, Maged F.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (05)
  • [37] Photothermal catalytic CO2 hydrogenation to methanol on Au/In2O3 nanowires
    Wang, Letian
    Yao, Defu
    Zhang, Chenchen
    Chen, Yuzhen
    Amirav, Lilac
    Zhong, Ziyi
    CHEM CATALYSIS, 2024, 4 (09):
  • [38] Engineering the crystal facets of Pt/In2O3 catalysts for high-efficiency methanol synthesis from CO2 hydrogenation
    Shi, Tianle
    Men, Yong
    Liu, Shuang
    Wang, Jinguo
    Li, Zhuping
    Qin, Keye
    Tian, Dandan
    An, Wei
    Pan, Xiaoli
    Li, Lin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 651
  • [39] Rational Control of Oxygen Vacancy Density in In2O3 to Boost Methanol Synthesis from CO2 Hydrogenation
    Wang, Wenhang
    Huo, Kaixuan
    Wang, Yang
    Xie, Jinghao
    Sun, Xu
    He, Yingluo
    Li, Meng
    Liang, Jie
    Gao, Xinhua
    Yang, Guohui
    Lin, Simin
    Cao, Fengliang
    Jiang, Hu
    Wu, Mingbo
    Tsubaki, Noritatsu
    ACS CATALYSIS, 2024, 14 (13): : 9887 - 9900
  • [40] A combined experimental and DFT study of H2O effect on In2O3/ZrO2 catalyst for CO2 hydrogenation to methanol
    Jiang, Xiao
    Nie, Xiaowa
    Gong, Yutao
    Moran, Colton M.
    Wang, Jianyang
    Zhu, Jie
    Chang, Huibin
    Guo, Xinwen
    Walton, Krista S.
    Song, Chunshan
    JOURNAL OF CATALYSIS, 2020, 383 : 283 - 296