Lyapunov-type inequality to general second-order elliptic equations

被引:0
作者
Oza, Priyank [1 ]
机构
[1] Indian Inst Technol Gandhinagar, Dept Math, Gandhinagar, Gujarat, India
关键词
Dirichlet and Neumann boundary value problem; Dirichlet form; non-symmetric semigroup; probabilistic representation; BOUNDARY-VALUE-PROBLEMS; STOCHASTIC DIFFERENTIAL-EQUATIONS; OPERATORS;
D O I
10.1002/mma.10297
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish Lyapunov-type inequality for equations concerning general class of second-order non-symmetric elliptic operators with singular coefficients. Our approach is based on the probabilistic representation of solutions and stochastic calculus. We also discuss a Lyapunov-type inequality for equations pertaining to second-order symmetric operator with some regularity assumptions on the coefficients and a nonlinear Neumann boundary condition.
引用
收藏
页码:14688 / 14698
页数:11
相关论文
共 42 条
[31]  
Ma Z.-M., 1992, INTRO THEORY NONSYMM
[32]  
Oshima Y., 1988, LECT DIRICHLET SPACE
[33]  
Oza P., 2024, PURE APPL FUNCT ANAL, V9, P273
[34]  
Pinasco J. P., 2004, ABSTRACT APPL MATH, V2, P147
[35]  
Pinasco J. P., 2013, LYAPUNOVTYPE INEQUAL
[36]  
Pinsky RG, 1995, CAMBRIDGE STUDIES AD
[37]   Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions [J].
Rong, Ji ;
Bai, Chuanzhi .
ADVANCES IN DIFFERENCE EQUATIONS, 2015, :1-10
[38]   LYAPUNOV-TYPE INEQUALITY FOR EXTREMAL PUCCI'S EQUATIONS [J].
Tyagi, J. ;
Verma, R. B. .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 109 (03) :416-430
[39]  
WANG HZ, 1995, SIAM J CONTROL OPTIM, V33, P1312, DOI 10.1137/S036301299324532X
[40]  
Wintner A., 1951, Amer. J. Math., V73, P368, DOI 10.2307/2372182