Mechanisms of Yiai Fuzheng formula in the treatment of triple-negative breast cancer based on UPLC-Q-Orbitrap-HRMS, network pharmacology, and experimental validation

被引:0
作者
Li, Ruijie [1 ,2 ]
Ke, Haoliang [1 ]
Liu, Pan [3 ]
Yang, Qian [3 ]
Li, Yuxin [3 ]
Ke, Longzhu [1 ,2 ]
Wang, Xiuping [1 ]
Wu, Chaoyan [1 ]
Zhang, Yingwen [1 ,2 ]
机构
[1] Wuhan Univ, Dept Integrated Chinese & Western Med, Zhongnan Hosp, Wuhan 430071, Peoples R China
[2] Hubei Univ Chinese Med, Coll Tradit Chinese Med, Wuhan 430065, Peoples R China
[3] Wuhan Univ, Zhongnan Hosp, Dept Radiat & Med Oncol, Wuhan 430071, Peoples R China
关键词
Yiai Fuzheng formula; Triple-negative breast cancer; Network pharmacology; PI3K/Akt/ mTOR pathway; Epithelial-mesenchymal transition; MIGRATION; INVASION;
D O I
10.1016/j.heliyon.2024.e36579
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ethnopharmacological relevance: Yiai Fuzheng formula (YAFZF), as a Traditional Chinese Medicine (TCM) prescription, has been used widely at Zhongnan Hospital of Wuhan University for its therapeutic effects and high safety on triple-negative breast cancer (TNBC). Objective: In this study, we employed ultra-high-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap-HRMS), network pharmacology, and experimental validation to elucidate the underlying action mechanism of YAFZF in the treatment of TNBC. Methods: The key active ingredients in YAFZF were analyzed using UPLC-Q-Orbitrap-HRMS, and then the potential components, target genes and signalling pathways of YAFZF were predicted using the network pharmacological method. We then used molecular docking to visualize the combination characteristics between major active components and macromolecules in the crucial pathway. In vitro experiments were conducted to investigate the inhibitory effects of YAFZF treatment on the cell viability, invasion, and migration of 4T1 and MDA-MB-231 cells. The xenograft TNBC models were constructed using female Balb/c mice, and their body weights, tumour volumes, and weights were monitored during YAFZF treatment. Quantitative real-time PCR (qRT-PCR), Hematoxylin-eosin (HE), immunohistochemistry (IHC) staining, Western blot (WB), and terminal deoxynucleotidyl transferase (TdT)-dUTP nick-end labeling (TUNEL) staining were used for further experimental validation. Results: Based on UPLC-Q-Orbitrap-HRMS and network pharmacology analysis, 6 major bioactive components and 153 intersecting genes were obtained for YAFZF against TNBC. Functional enrichment analysis identified that the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signalling pathway might be the mechanism of action of YAFZF in the treatment of TNBC. Molecular docking results suggested that the main active compounds in YAFZF had strong binding energies with the proteins in the PI3K/Akt pathway. In vitro experiments showed that YAFZF inhibited the cell viability, invasion, and migration abilities of TNBC cells. Animal experiments confirmed that YAFZF treatment suppressed tumour cell proliferation and increased apoptotic cells. PCR, HE, WB, and IHC results indicated that YAFZF could suppress xenograft tumour metastases by inhibiting the PI3K/AKT/mTOR pathway regulating the epithelial-mesenchymal transition (EMT) process. Conclusion: YAFZF therapy showed its potential for reducing proliferation, invasion, and migration abilities, increasing apoptosis of TNBC cells. Furthermore, YAFZF treated TNBC by inhibiting xenograft tumour distant metastases via the regulation of EMT by the PI3K/Akt/mTOR pathway, suggesting that it may be useful as an adjuvant treatment.
引用
收藏
页数:21
相关论文
共 60 条
  • [1] OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders
    Amberger, Joanna S.
    Bocchini, Carol A.
    Schiettecatte, Francois
    Scott, Alan F.
    Hamosh, Ada
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) : D789 - D798
  • [2] PharmGKB: A worldwide resource for pharmacogenomic information
    Barbarino, Julia M.
    Whirl-Carrillo, Michelle
    Altman, Russ B.
    Klein, Teri E.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2018, 10 (04)
  • [3] UniProt: a worldwide hub of protein knowledge
    Bateman, Alex
    Martin, Maria-Jesus
    Orchard, Sandra
    Magrane, Michele
    Alpi, Emanuele
    Bely, Benoit
    Bingley, Mark
    Britto, Ramona
    Bursteinas, Borisas
    Busiello, Gianluca
    Bye-A-Jee, Hema
    Da Silva, Alan
    De Giorgi, Maurizio
    Dogan, Tunca
    Castro, Leyla Garcia
    Garmiri, Penelope
    Georghiou, George
    Gonzales, Daniel
    Gonzales, Leonardo
    Hatton-Ellis, Emma
    Ignatchenko, Alexandr
    Ishtiaq, Rizwan
    Jokinen, Petteri
    Joshi, Vishal
    Jyothi, Dushyanth
    Lopez, Rodrigo
    Luo, Jie
    Lussi, Yvonne
    MacDougall, Alistair
    Madeira, Fabio
    Mahmoudy, Mahdi
    Menchi, Manuela
    Nightingale, Andrew
    Onwubiko, Joseph
    Palka, Barbara
    Pichler, Klemens
    Pundir, Sangya
    Qi, Guoying
    Raj, Shriya
    Renaux, Alexandre
    Lopez, Milagros Rodriguez
    Saidi, Rabie
    Sawford, Tony
    Shypitsyna, Aleksandra
    Speretta, Elena
    Turner, Edward
    Tyagi, Nidhi
    Vasudev, Preethi
    Volynkin, Vladimir
    Wardell, Tony
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D506 - D515
  • [4] EMT in cancer
    Brabletz, Thomas
    Kalluri, Raghu
    Angela Nieto, M.
    Weinberg, Robert A.
    [J]. NATURE REVIEWS CANCER, 2018, 18 (02) : 128 - +
  • [5] Burley SK, 2017, METHODS MOL BIOL, V1606, P627, DOI 10.1007/978-1-4939-7000-1_26
  • [6] Cao Dai, 2021, Effect and Mechanism of Luteolin on Suppressing Triple-Negative Breast Cancer
  • [7] VEGFA and tumour angiogenesis
    Claesson-Welsh, L.
    Welsh, M.
    [J]. JOURNAL OF INTERNAL MEDICINE, 2013, 273 (02) : 114 - 127
  • [8] Swiss Target Prediction: updated data and new features for efficient prediction of protein targets of small molecules
    Daina, Antoine
    Michielin, Olivier
    Zoete, Vincent
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) : W357 - W364
  • [9] SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules
    Daina, Antoine
    Michielin, Olivier
    Zoete, Vincent
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [10] Mutant p53 in breast cancer: potential as a therapeutic target and biomarker
    Duffy, Michael J.
    Synnott, Naoise C.
    Crown, John
    [J]. BREAST CANCER RESEARCH AND TREATMENT, 2018, 170 (02) : 213 - 219