共 21 条
- [11] On the Diophantine equations of the form λ1Un1 + λ2Un2 + ••• plus λkUnk = wp1z1 p2z2 ••• pszs BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (03):
- [13] A note on the Diophantine equations 2 ln 2 = 1 + q + <middle dot> <middle dot> <middle dot> + q α and application to odd perfect numbers INDAGATIONES MATHEMATICAE-NEW SERIES, 2024, 35 (02): : 282 - 287
- [14] On the Diophantine equations of the form λ1Un1+λ2Un2+⋯+λkUnk=wp1z1p2z2⋯pszs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1U_{n_1} + \lambda _2U_{n_2} +\cdots + \lambda _kU_{n_k} = wp_1^{z_1}p_2^{z_2} \cdots p_s^{z_s}$$\end{document} Boletín de la Sociedad Matemática Mexicana, 2024, 30 (3)
- [15] On the number of solutions of the generalized Ramanujan-Nagell equation D1x2 + D2m = pn BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2012, 55 (03): : 279 - 293
- [17] Positive integer solutions of the diophantine equation x2-Lnxy +(-1)ny2 = ±5r PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (03): : 301 - 313
- [18] Positive integer solutions of the diophantine equation x2 − Lnxy + (−1)ny2 = ±5r Proceedings - Mathematical Sciences, 2014, 124 : 301 - 313