Y-90 PET/MR imaging optimization with a Bayesian penalized likelihood reconstruction algorithm

被引:1
作者
Calatayud-Jordan, Jose [1 ]
Carrasco-Vela, Nuria [2 ]
Chimeno-Hernandez, Jose [1 ]
Carles-Farina, Montserrat [3 ,4 ]
Olivas-Arroyo, Consuelo [1 ]
Bello-Arques, Pilar [1 ]
Perez-Enguix, Daniel [5 ]
Marti-Bonmati, Luis [3 ,4 ,5 ]
Torres-Espallardo, Irene [1 ,3 ,4 ]
机构
[1] La Fe Univ, Polytech Hosp, Dept Nucl Med, Ave Fernando Abril Martorell 106, Valencia 46026, Spain
[2] Clin Univ Hosp Valencia, Radiophys & Radiol Protect Serv, Ave Blasco Ibanez 17, Valencia 46010, Spain
[3] La Fe Univ, Hlth Res Inst Hosp La Fe IIS La Fe, Biomed Imaging Res Grp GIBI230, Ave Fernando Abril Martorell 106, Valencia 46026, Spain
[4] Polytech Hosp, Ave Fernando Abril Martorell 106, Valencia 46026, Spain
[5] La Fe Univ, Polytech Hosp, Dept Radiol, Ave Fernando Abril Martorell 106, Valencia 46026, Spain
关键词
Bayesian penalized likelihood; PET/MR; Q.Clear; Image quality; Radioembolization; Yttrium-90; EXPECTATION MAXIMIZATION; RADIOEMBOLIZATION; QUALITY; MICROSPHERES; THERAPY;
D O I
10.1007/s13246-024-01452-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Positron Emission Tomography (PET) imaging after 90\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{90}$$\end{document}Y liver radioembolization is used for both lesion identification and dosimetry. Bayesian penalized likelihood (BPL) reconstruction algorithms are an alternative to ordered subset expectation maximization (OSEM) with improved image quality and lesion detectability. The investigation of optimal parameters for 90\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{90}$$\end{document}Y image reconstruction of Q.Clear, a commercial BPL algorithm developed by General Electric (GE), in PET/MR is a field of interest and the subject of this study. The NEMA phantom was filled at an 8:1 sphere-to-background ratio. Acquisitions were performed on a PET/MR scanner for clinically relevant activities between 0.7 and 3.3 MBq/ml. Reconstructions with Q.Clear were performed varying the beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} penalty parameter between 20 and 6000, the acquisition time between 5 and 20 min and pixel size between 1.56 and 4.69 mm. OSEM reconstructions of 28 subsets with 2 and 4 iterations with and without Time-of-Flight (TOF) were compared to Q.Clear with beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} = 4000. Recovery coefficients (RC), their coefficient of variation (COV), background variability (BV), contrast-to-noise ratio (CNR) and residual activity in the cold insert were evaluated. Increasing beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} parameter lowered RC, COV and BV, while CNR was maximized at beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} = 4000; further increase resulted in oversmoothing. For quantification purposes, beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} = 1000-2000 could be more appropriate. Longer acquisition times resulted in larger CNR due to reduced image noise. Q.Clear reconstructions led to higher CNR than OSEM. A beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} of 4000 was obtained for optimal image quality, although lower values could be considered for quantification purposes. An optimal acquisition time of 15 min was proposed considering its clinical use.
引用
收藏
页码:1397 / 1413
页数:17
相关论文
共 61 条
[51]   Novel penalised likelihood reconstruction of PET in the assessment of histologically verified small pulmonary nodules [J].
Teoh, Eugene J. ;
McGowan, Daniel R. ;
Bradley, Kevin M. ;
Belcher, Elizabeth ;
Black, Edward ;
Gleeson, Fergus V. .
EUROPEAN RADIOLOGY, 2016, 26 (02) :576-584
[52]   Phantom and Clinical Evaluation of the Bayesian Penalized Likelihood Reconstruction Algorithm Q.Clear on an LYSO PET/CT System [J].
Teoh, Eugene J. ;
McGowan, Daniel R. ;
Macpherson, Ruth E. ;
Bradley, Kevin M. ;
Gleeson, Fergus V. .
JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (09) :1447-1452
[53]   Quantitative performance and optimal regularization parameter in block sequential regularized expectation maximization reconstructions in clinical 68Ga-PSMA PET/MR [J].
ter Voert, Edwin E. G. W. ;
Muehlematter, Urs J. ;
Delso, Gaspar ;
Pizzuto, Daniele A. ;
Muller, Julian ;
Nagel, Hannes W. ;
Burger, Irene A. .
EJNMMI RESEARCH, 2018, 8
[54]   The effect of Q.Clear reconstruction on quantification and spatial resolution of 18F-FDG PET in simultaneous PET/MR [J].
Tian, Defeng ;
Yang, Hongwei ;
Li, Yan ;
Cui, Bixiao ;
Lu, Jie .
EJNMMI PHYSICS, 2022, 9 (01)
[55]   Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET [J].
van der Vos, Charlotte S. ;
Koopman, Danielle ;
Rijnsdorp, Sjoerd ;
Arends, Albert J. ;
Boellaard, Ronald ;
van Dalen, Jorn A. ;
Lubberink, Mark ;
Willemsen, Antoon T. M. ;
Visser, Eric P. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 :S4-S16
[56]   Optimization of PET/CT image quality using the GE "Sharp IR' point-spread function reconstruction algorithm [J].
Vennart, Nicholas J. ;
Bird, Nicholas ;
Buscombe, John ;
Cheow, Heok K. ;
Nowosinska, Ewa ;
Heard, Sarah .
NUCLEAR MEDICINE COMMUNICATIONS, 2017, 38 (06) :471-479
[57]   Selective internal radiation therapy with SIR-Spheres in hepatocellular carcinoma and cholangiocarcinoma [J].
Wang, Eric A. ;
Broadwell, Scott R. ;
Bellavia, Ross J. ;
Stein, Jeff P. .
JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2017, 8 (02) :266-278
[58]   Quantitative 90Y image reconstruction in PET [J].
Willowson, Kathy ;
Forwood, Nicholas ;
Jakoby, Bjoern W. ;
Smith, Anne M. ;
Bailey, Dale L. .
MEDICAL PHYSICS, 2012, 39 (11) :7153-7159
[59]   A multicentre comparison of quantitative 90Y PET/CT for dosimetric purposes after radioembolization with resin microspheres [J].
Willowson, Kathy P. ;
Tapner, Michael ;
Bailey, Dale L. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (08) :1202-1222
[60]   Comparison of quantitative Y-90 SPECT and non-time-of-flight PET imaging in post-therapy radioembolization of liver cancer [J].
Yue, Jianting ;
Mauxion, Thibault ;
Reyes, Diane K. ;
Lodge, Martin A. ;
Hobbs, Robert F. ;
Rong, Xing ;
Dong, Yinfeng ;
Herman, Joseph M. ;
Wahl, Richard L. ;
Geschwind, Jean-Francois H. ;
Frey, Eric C. .
MEDICAL PHYSICS, 2016, 43 (10) :5779-5790