QM/MM MD Study on the Reaction Mechanism of Thymidine Phosphorylation Catalyzed by the Enzyme Thermotoga maritima Thymidine Kinase 1

被引:4
作者
Makurat, Samanta [1 ]
Neves, Rui P. P. [2 ]
Ramos, Maria J. [2 ]
Rak, Janusz [1 ]
机构
[1] Univ Gdansk, Fac Chem, PL-80308 Gdansk, Poland
[2] Univ Porto, LAQV REQUIMTE, Dept Quim & Bioquim, Fac Ciencias, P-4169007 Porto, Portugal
来源
ACS CATALYSIS | 2024年 / 14卷 / 13期
关键词
QM/MM MD; thymidine kinase 1; TK1; tmTK; Thermotoga maritima; phosphorylation; density functional theory; umbrella sampling; MOLECULAR-DYNAMICS SIMULATIONS; QUATERNARY STRUCTURE; AMBER; HUMAN-THYMIDINE-KINASE-1; ACTIVATION; PARAMETERS; CYSTEINES; BINDING; MODEL; ATP;
D O I
10.1021/acscatal.4c01867
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Here, we report mechanistic studies on type II thymidine kinase, Thermotoga maritima TmTK, aiming to predict barriers for the enzyme-catalyzed reaction. Extensive umbrella sampling QM/MM MD simulations (PBE/GPW/DZVP-GTH-PBE:AMBER) resulted in a free energy barrier for the phosphorylation reaction's rate-limiting step of 16.6 kcal<middle dot>mol(-1), which is in an excellent agreement with the experimentally reported value. An atomistic picture provided by our simulations reveals that the reaction follows a concerted, dissociative S(N)2 reaction mechanism in which the 5 '-oxygen of the ribose moiety in thymidine is phosphorylated by the gamma-phosphate of ATP, while assisted by an asynchronous deprotonation of the 5 '-hydroxyl by a GLU84 base. The reaction was calculated to be endergonic, with a reaction free energy of 10.8 kcal<middle dot>mol(-1), and it can be followed by low-barrier processes that promote the unbinding of the phosphorylated thymidine product, namely, the deprotonation of the GLU84 by the thymidine-phosphate that is accompanied by a weaker binding of the product to the Mg2+ ion.
引用
收藏
页码:9840 / 9849
页数:10
相关论文
共 67 条
[1]   H++3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations [J].
Anandakrishnan, Ramu ;
Aguilar, Boris ;
Onufriev, Alexey V. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (W1) :W537-W541
[2]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[3]   Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology [J].
Bertoni, Martino ;
Kiefer, Florian ;
Biasini, Marco ;
Bordoli, Lorenza ;
Schwede, Torsten .
SCIENTIFIC REPORTS, 2017, 7
[4]   The SWISS-MODEL Repository-new features and functionality [J].
Bienert, Stefan ;
Waterhouse, Andrew ;
de Beer, Tjaart A. P. ;
Tauriello, Gerardo ;
Studer, Gabriel ;
Bordoli, Lorenza ;
Schwede, Torsten .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D313-D319
[5]   High-level expression and purification of human thymidine kinase 1: Quaternary structure, stability, and kinetics [J].
Birringer, Markus S. ;
Perozzo, Remo ;
Kut, Elvan ;
Stillhart, Corinne ;
Surber, Wanda ;
Scapozza, Leonardo ;
Folkers, Gerd .
PROTEIN EXPRESSION AND PURIFICATION, 2006, 47 (02) :506-515
[6]   Structure of a type II thymidine kinase with bound dTTP [J].
Birringer, MS ;
Claus, MT ;
Folkers, G ;
Kloer, DP ;
Schulz, GE ;
Scapozza, L .
FEBS LETTERS, 2005, 579 (06) :1376-1382
[7]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[8]   A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
LU, PH ;
NOCEDAL, J ;
ZHU, CY .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) :1190-1208
[9]  
Case D. A., 2019, AMBER2019
[10]   Non-Viral Deoxyribonucleoside Kinases - Diversity and Practical Use [J].
Christiansen, Louise Slot ;
Munch-Petersen, Birgitte ;
Knecht, Wolfgang .
JOURNAL OF GENETICS AND GENOMICS, 2015, 42 (05) :235-248