Impact of hydride composite materials on thermochemical hydrogen compression

被引:2
作者
Lau, Marius [1 ]
Ehrensberger, Oliver [1 ,2 ,3 ]
Weissgaerber, Thomas
Heubner, Felix
机构
[1] Fraunhofer Inst Mfg Technol & Adv Mat IFAM, Branch Lab Dresden, Winterbergstr 28, D-01277 Dresden, Germany
[2] Dresden Univ Technol TUD, Inst Mat Sci, D-01062 Dresden, Germany
[3] MUT Adv Heating GmbH, Fritz Winkler Str 1-2, D-07749 Jena, Germany
关键词
Thermochemical hydrogen compression; Metal hydride composite; LaNi; 5; TiMn; 2; Hydralloy; GRAPHITE-COMPOSITES; STORAGE; ENERGY; HEAT; MAGNESIUM;
D O I
10.1016/j.ijhydene.2024.04.229
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The formation of a hydride from a metal or intermetallic alloy is an exothermic reversible chemical reaction. The thermodynamic properties governing hydride formation facilitate their thermochemical applications, such as hydrogen compression. Thermal transport inside the materials is of highest importance for system dynamics and its productivity. In this contribution, we demonstrate a two-stage thermochemical hydrogen compressor using the AB5 alloy LaNi5 in the first stage and an AB2 alloy TiMn2 (Hydralloy (R)) in the second stage. To evaluate the impact of the thermal conductivity of the materials, the productivity of the compressor was compared for pure metal hydride compacts (MH) and metal hydride composite materials (MHC). Compared to pure MH pellets, the MHC used in this study contain expanded natural graphite (ENG), a secondary phase with highest thermal conductivity. As the radial thermal conductivity of the MHC increased, the time required for the loading, temperature change and unloading steps was successfully reduced by 400%. Productivity was increased by over 320 % from 14 NlH2/(kgMaterial*h) to 44 NlH2/(kgMaterial*h). Overall, MHC have the potential to simplify handling, reactor design and reduce investment costs for thermochemical compression systems. Thus, MHC have highest impact and potential for thermochemical applications.
引用
收藏
页码:562 / 570
页数:9
相关论文
共 50 条
  • [31] Experimental and comparative study of metal hydride hydrogen tanks
    Souahlia, A.
    Dhaou, H.
    Askri, F.
    Sofiene, M.
    Jemni, A.
    Ben Nasrallah, S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (20) : 12918 - 12922
  • [32] Thermodynamic simulation of hydrogen based thermochemical energy storage system
    Choudhari, Manoj S.
    Sharma, Vinod Kumar
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (30) : 16440 - 16452
  • [33] Effect of hydride nucleation rate on the hydrogen capacity of Mg
    Tien, Hung-Yu
    Tanniru, Mahesh
    Wu, Chang-Yu
    Ebrahimi, Fereshteh
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (15) : 6343 - 6349
  • [34] Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu-Cl cycle
    Naterer, G.
    Suppiah, S.
    Lewis, M.
    Gabriel, K.
    Dincer, I.
    Rosen, M. A.
    Fowler, M.
    Rizvi, G.
    Easton, E. B.
    Ikeda, B. M.
    Kaye, M. H.
    Lu, L.
    Pioro, I.
    Spekkens, P.
    Tremaine, P.
    Mostaghimi, J.
    Avsec, J.
    Jiang, J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (07) : 2901 - 2917
  • [35] Hydrogen storage properties of magnesium based nanostructured composite materials
    Au, M
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2005, 117 (01): : 37 - 44
  • [36] Research and Development of Nano-Composite Materials for Hydrogen Storage
    Kojima, Yoshitsugu
    PRICM 7, PTS 1-3, 2010, 654-656 : 2931 - 2934
  • [37] Research and Development of Nano-Composite Materials for Hydrogen Storage
    Kojima, Yoshitsugu
    PRICM 7, PTS 1-3, 2010, 654-656 : 2935 - 2938
  • [38] Hydrogen densification in metal hydride
    Akiyama, T
    Yagi, J
    HYDROGEN ENERGY PROGRESS XIII, VOLS 1 AND 2, PROCEEDINGS, 2000, : 515 - 518
  • [39] Solar Thermochemical Hydrogen Production in the USA
    Falter, Christoph
    Sizmann, Andreas
    SUSTAINABILITY, 2021, 13 (14)
  • [40] HYDRIDE4MOBILITY: An EU project on hydrogen powered forklift using metal hydrides for hydrogen storage and H2 compression
    Yartys, V. A.
    Lototskyy, M. V.
    Tolj, I.
    von Colbe, J. Bellosta
    Denys, R. V.
    Davids, M. W.
    Nyamsi, S. Nyallang
    Swanepoel, D.
    Berezovets, V. V.
    Zavaliy, I. Yu.
    Suwarno, S.
    Puszkiel, I. J.
    Jepsen, J.
    Ferreira, I.
    Pistidda, C.
    Shang, Yuanyuan
    Pasupathi, S.
    Linkov, V.
    JOURNAL OF ENERGY STORAGE, 2025, 109