Solving Bayesian Inverse Problems via Variational Autoencoders

被引:0
|
作者
Goh, Hwan [1 ]
Sheriffdeen, Sheroze [1 ]
Wittmer, Jonathan [1 ]
Bui-Thanh, Tan [1 ]
机构
[1] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX 78712 USA
来源
MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 145 | 2021年 / 145卷
基金
美国国家科学基金会;
关键词
Machine Learning; Uncertainty Quantification; Bayesian Inverse Problems; Variational Autoencoders;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the field of machine learning has made phenomenal progress in the pursuit of simulating real-world data generation processes. One notable example of such success is the variational autoencoder (VAE). In this work, with a small shift in perspective, we leverage and adapt VAEs for a different purpose: uncertainty quantification (UQ) in scientific inverse problems. We introduce UQ-VAE: a flexible, adaptive, hybrid data/model-constrained framework for training neural networks capable of rapid modelling of the posterior distribution representing the unknown parameter of interest. Specifically, from divergence-based variational inference, our framework is derived such that most of the information usually present in scientific inverse problems is fully utilized in the training procedure. Additionally, this framework includes an adjustable hyperparameter that allows selection of the notion of distance between the posterior model and the target distribution. This introduces more flexibility in controlling how optimization directs the learning of the posterior model. Further, this framework possesses an inherent adaptive optimization property that emerges through the learning of the posterior uncertainty. Numerical results for an elliptic PDE-constrained Bayesian inverse problem are provided to verify the proposed framework.
引用
收藏
页码:386 / 424
页数:39
相关论文
共 50 条
  • [21] Multilevel Stein variational gradient descent with applications to Bayesian inverse problems
    Alsup, Terrence
    Venturi, Luca
    Peherstorfer, Benjamin
    MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 145, 2021, 145 : 93 - +
  • [22] Solving inverse problems for mixed-variational equations on perforated domains
    M. I. Berenguer
    D. Gámez
    A. I. Garralda-Guillem
    H. Kunze
    D. La Torre
    M. Ruiz Galán
    Computational and Applied Mathematics, 2023, 42
  • [23] Solving inverse problems for mixed-variational equations on perforated domains
    Berenguer, M. I.
    Gamez, D.
    Garralda-Guillem, A. I.
    Kunze, H.
    La Torre, D.
    Galan, M. Ruiz
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [24] Solving inverse problems via auto-encoders
    Peng P.
    Jalali S.
    Yuan X.
    Jalali, Shirin (shirin.jalali@nokia-bell-labs.com), 1600, Institute of Electrical and Electronics Engineers Inc. (01): : 312 - 323
  • [25] Solving Bayesian inverse problems from the perspective of deep generative networks
    Thomas Y. Hou
    Ka Chun Lam
    Pengchuan Zhang
    Shumao Zhang
    Computational Mechanics, 2019, 64 : 395 - 408
  • [26] Solving Bayesian inverse problems from the perspective of deep generative networks
    Hou, Thomas Y.
    Lam, Ka Chun
    Zhang, Pengchuan
    Zhang, Shumao
    COMPUTATIONAL MECHANICS, 2019, 64 (02) : 395 - 408
  • [27] A Hybrid Optimization Method for Solving Bayesian Inverse Problems under Uncertainty
    Zhang, Kai
    Wang, Zengfei
    Zhang, Liming
    Yao, Jun
    Yan, Xia
    PLOS ONE, 2015, 10 (08):
  • [28] Joint estimation of parameters and hyperparameters in a Bayesian approach of solving inverse problems
    MohammadDjafari, A
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL II, 1996, : 473 - 476
  • [29] Solving the Inverse Kinematics of Robotic Arm Using Autoencoders
    Polyzos, Konstantinos D.
    Groumpos, Peter P.
    Dermatas, Evangelos
    CREATIVITY IN INTELLIGENT TECHNOLOGIES AND DATA SCIENCE, PT 1, 2019, 1083 : 288 - 298
  • [30] Local regularization of linear inverse problems via variational filtering
    Lamm, Patricia K.
    INVERSE PROBLEMS, 2017, 33 (08)