Online Optimization of DNN Inference Network Utility in Collaborative Edge Computing

被引:1
作者
Li, Rui [1 ]
Ouyang, Tao [1 ]
Zeng, Liekang [1 ]
Liao, Guocheng [2 ]
Zhou, Zhi [1 ]
Chen, Xu [1 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Sch Software Engn, Guangzhou 510275, Peoples R China
基金
美国国家科学基金会;
关键词
Task analysis; Routing; Computational modeling; Resource management; Optimization; Collaboration; Costs; Collaborative edge computing; workload allocation; unknown utility function; request routing; online mirror descent; ALLOCATION; ALGORITHMS;
D O I
10.1109/TNET.2024.3421356
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Collaborative Edge Computing (CEC) is an emerging paradigm that collaborates heterogeneous edge devices as a resource pool to compute DNN inference tasks in proximity such as edge video analytics. Nevertheless, as the key knob to improve network utility in CEC, existing works mainly focus on the workload routing strategies among edge devices with the aim of minimizing the routing cost, remaining an open question for joint workload allocation and routing optimization problem from a system perspective. To this end, this paper presents a holistic, learned optimization for CEC towards maximizing the total network utility in an online manner, even though the utility functions of task input rates are unknown a priori. In particular, we characterize the CEC system in a flow model and formulate an online learning problem in a form of cross-layer optimization. We propose a nested-loop algorithm to solve workload allocation and distributed routing iteratively, using the tools of gradient sampling and online mirror descent. To improve the convergence rate over the nested-loop version, we further devise a single-loop algorithm. Rigorous analysis is provided to show its inherent convexity, efficient convergence, as well as algorithmic optimality. Finally, extensive numerical simulations demonstrate the superior performance of our solutions.
引用
收藏
页码:4414 / 4426
页数:13
相关论文
共 39 条
[31]   Online Learning and Online Convex Optimization [J].
Shalev-Shwartz, Shai .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 4 (02) :107-194
[32]   High-Efficient Energy Harvester With Flexible Solar Panel for a Wearable Sensor Device [J].
Thang Viet Tran ;
Chung, Wan-Young .
IEEE SENSORS JOURNAL, 2016, 16 (24) :9021-9028
[33]  
Vaswani A., 2017, Proceedings of the 31st international conference on neural information processing systems, P6000, DOI DOI 10.48550/ARXIV.1706.03762
[34]   RaPiD: AI Accelerator for Ultra-low Precision Training and Inference [J].
Venkataramani, Swagath ;
Srinivasan, Vijayalakshmi ;
Wang, Wei ;
Sen, Sanchari ;
Zhang, Jintao ;
Agrawal, Ankur ;
Kar, Monodeep ;
Jain, Shubham ;
Mannari, Alberto ;
Tran, Hoang ;
Li, Yulong ;
Ogawa, Eri ;
Ishizaki, Kazuaki ;
Inoue, Hiroshi ;
Schaal, Marcel ;
Serrano, Mauricio ;
Choi, Jungwook ;
Sun, Xiao ;
Wang, Naigang ;
Chen, Chia-Yu ;
Allain, Allison ;
Bonano, James ;
Cao, Nianzheng ;
Casatuta, Robert ;
Cohen, Matthew ;
Fleischer, Bruce ;
Guillorn, Michael ;
Haynie, Howard ;
Jung, Jinwook ;
Kang, Mingu ;
Kim, Kyu-hyoun ;
Koswatta, Siyu ;
Lee, Saekyu ;
Lutz, Martin ;
Mueller, Silvia ;
Oh, Jinwook ;
Ranjan, Ashish ;
Ren, Zhibin ;
Rider, Scot ;
Schelm, Kerstin ;
Scheuermann, Michael ;
Silberman, Joel ;
Yang, Jie ;
Zalani, Vidhi ;
Zhang, Xin ;
Zhou, Ching ;
Ziegler, Matt ;
Shah, Vinay ;
Ohara, Moriyoshi ;
Lu, Pong-Fei .
2021 ACM/IEEE 48TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA 2021), 2021, :153-166
[35]   Optimal flow control and routing in multi-path networks [J].
Wang, WH ;
Palaniswami, M ;
Low, SH .
PERFORMANCE EVALUATION, 2003, 52 (2-3) :119-132
[36]   HIDL: High-Throughput Deep Learning Inference at the Hybrid Mobile Edge [J].
Wu, Jing ;
Wang, Lin ;
Pei, Qiangyu ;
Cui, Xingqi ;
Liu, Fangming ;
Yang, Tingting .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) :4499-4514
[37]   Node-based optimal power control, routing, and congestion control in wireless networks [J].
Xi, Yufang ;
Yeh, Edmund M. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) :4081-4106
[38]  
Yoon E. K., P 38 INT C MACH LEAR, V139
[39]  
Zhang JK, 2022, 2022 20TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT 2022), P121, DOI 10.23919/WiOpt56218.2022.9930581