An Insight into Halide Solid-State Electrolytes: Progress and Modification Strategies

被引:9
|
作者
Huang, Lingjun [1 ]
Zhang, Ling [1 ,2 ]
Bi, Jiaying [3 ]
Liu, Tao [2 ]
Zhang, Yuanxing [1 ]
Liu, Chengcai [1 ]
Cui, Jingwen [1 ,2 ]
Su, Yuefeng [1 ,2 ]
Wu, Borong [1 ,2 ,4 ]
Wu, Feng [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Chonging Innovat Ctr, Chongqing 401120, Peoples R China
[3] Xian Shiyou Univ, Coll New Energy, Xian 710065, Peoples R China
[4] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
IONIC-CONDUCTIVITY; PHASE-TRANSFORMATION; DOUBLE CHLORIDE; LITHIUM; ENERGY; BATTERY; STABILITY; COMPOSITES; TRANSITION; MECHANISMS;
D O I
10.34133/energymatadv.0092
中图分类号
O59 [应用物理学];
学科分类号
摘要
Tremendous studies have been engaged in exploring the application of solid-state electrolytes (SSEs) as it provides opportunities for next-generation batteries with excellent safety and high energy density. Among the existing SSEs, newly developed halide SSEs have become a hot spot owing to their high ionic conductivity up to 1 mS cm-1 and their stability against high-voltage cathode. As a result, halide SSEs have been shown to be promising candidates for all-solid-state lithium batteries (ASSLBs). Here, we review the progress of halide SSEs and available modification strategies of halide SSE-based batteries. First, halide SSEs are divided into four different categories, including halide SSEs with divalent metal, trivalent metal, tetravalent metal, and non-metal central elements, to overview their progress in the studies of their ionic conductivity, crystal structure, conductive mechanism, and electrochemical properties. Then, based on their existing drawbacks, three sorts of modification strategies, classified as chemical doping, interfacial modification, and composite electrolytes, along with their impacts on halide SSE-based batteries, are summarized. Finally, some perspectives toward halide SSE research are put forward, which will help promote the development of halide SSE-based batteries.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Ionic conductivity regulating strategies of sulfide solid-state electrolytes
    Liu, Xin-Yu
    Zhang, Nan
    Wang, Peng-Fei
    An, Xufei
    Shu, Jie
    Zhu, Yan-Rong
    He, Yan-Bing
    Yi, Ting-Feng
    ENERGY STORAGE MATERIALS, 2024, 72
  • [22] Recent progress and fundamentals of solid-state electrolytes for all solid-state rechargeable batteries: Mechanisms, challenges, and applications
    Raza, Saleem
    Bashir, Tariq
    Hayat, Asif
    Abd-Rabboh, Hisham S. M.
    Shen, Liguo
    Orooji, Yasin
    Lin, Hongjun
    JOURNAL OF ENERGY STORAGE, 2024, 92
  • [23] Compatibility of Halide Electrolytes in Solid-State Li-S Battery Cathodes
    Yanagihara, Shoma
    Huebner, Jan
    Huang, Zheng
    Inoishi, Atsushi
    Akamatsu, Hirofumi
    Hayashi, Katsuro
    Ohno, Saneyuki
    CHEMISTRY OF MATERIALS, 2024, 37 (01) : 109 - 118
  • [24] SOLID ELECTROLYTES AND SOLID-STATE BATTERIES
    LIANG, CC
    CHEMTECH, 1983, 13 (05) : 303 - 305
  • [25] Solid Electrolytes and Solid-State Batteries
    Takada, Kazunori
    ELECTROCHEMICAL STORAGE MATERIALS: SUPPLY, PROCESSING, RECYCLING AND MODELLING (ESTORM2015), 2016, 1765
  • [26] Emerging Halide Solid Electrolytes for Sodium Solid-State Batteries: Structure, Conductivity, Paradigm of Applications
    Wei, Zhixuan
    Nazar, Linda F.
    Janek, Juergen
    BATTERIES & SUPERCAPS, 2024, 7 (07)
  • [27] Recent progress in structural modification of polymer gel electrolytes for use in solid-state zinc-ion batteries
    Li, Yifan
    Yuan, Jingjing
    Qiao, Yifan
    Xu, Hui
    Zhang, Zhihao
    Zhang, Wenyao
    He, Guangyu
    Chen, Haiqun
    DALTON TRANSACTIONS, 2023, 52 (34) : 11780 - 11796
  • [28] Computational Auxiliary for the Progress of Sodium-Ion Solid-State Electrolytes
    Yang, Kaishuai
    Liu, Dayong
    Qian, Zhengfang
    Jiang, Dongting
    Wang, Renheng
    ACS NANO, 2021, 15 (11) : 17232 - 17246
  • [29] Research progress on interfacial problems and solid-state electrolytes in lithium batteries
    Xiao, Zhongliang
    Jiang, Lin
    Song, Liubin
    Zhao, Tingting
    Xiao, Minzhi
    Yan, Qunxuan
    Li, Lingjun
    JOURNAL OF ENERGY STORAGE, 2024, 96
  • [30] Research Progress on Polycarbonate-based Solid-state Polymer Electrolytes
    Dong, Tian-tian
    Zhang, Jian-jun
    Chai, Jing-chao
    Jia, Qing-ming
    Cui, Guang-lei
    ACTA POLYMERICA SINICA, 2017, (06): : 906 - 921