Modeling and parameter identification of rate-dependent hysteresis behavior based on modified-generalized Prandtl-Ishlinskii model

被引:2
|
作者
Zhu, Ruina [1 ]
Liu, Lu [1 ]
Wu, Yuhang [1 ]
Chen, Huan [2 ]
Lou, Weimin [2 ]
Yang, Peng [2 ]
Kong, Ming [1 ]
机构
[1] China Jiliang Univ, Coll Metrol Measurement & Instrument, Hangzhou 310018, Peoples R China
[2] Zhejiang Inst Metrol, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
piezoelectric actuator; hysteresis; improved Grey Wolf Optimizer; modified-generalized Prandtl-Ishlinskii model; ASYMMETRIC HYSTERESIS; COMPENSATION; ACTUATORS;
D O I
10.1088/1361-665X/ad4d38
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The intrinsic characteristic of piezoelectric actuators (PEA), known as hysteresis, has been demonstrated to diminish the capability and stability of the system significantly. This paper proposes a modified-generalized Prandtl-Ishlinskii (MGPI) model to describe the rate-dependent hysteresis in piezoelectric actuators. The developed model incorporates a voltage change rate function to replace the first part of the generalized Prandtl-Ishlinskii (GPI) model. Additionally, the model integrates the cubic polynomial into the envelope function, along with the dynamic thresholds and weights. When describing the hysteresis of the piezoelectric actuator (PEA), the model parameters are identified using the Improved Grey Wolf Optimizer (IGWO) algorithm. To prevent the algorithm from getting trapped in local optima, the cubic chaotic mapping is utilized for population initialization, as well as a nonlinear convergence factor, and the Levy flight strategy factor is introduced to update the Wolf pack's position. The rate-dependent hysteresis behavior of a PEA under excitation in the 1-200 Hz frequency range was experimentally measured. The measured data were used to demonstrate the validity of the proposed MGPI model. The relative root-mean-square error and the relative maximum error of the MGPI model are 1.41% and 6.00%, respectively, which are lower than those of the GPI model, which are 3.15% and 10.58%. Under the composite frequency driving, the outputs of the GPI model and MGPI model were compared with the measured data of the PEA, the results suggest that the MGPI model and the IGWO algorithm can more accurately describe the rate-dependent hysteresis of the piezoelectric actuators.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Modeling and Identification of the Rate-Dependent Hysteresis of Piezoelectric Actuator Using a Modified Prandtl-Ishlinskii Model
    Qin, Yanding
    Zhao, Xin
    Zhou, Lu
    MICROMACHINES, 2017, 8 (04)
  • [2] Generalized Prandtl-Ishlinskii Model for Rate-Dependent Hysteresis: Modeling and Its Inverse Compensation for Giant Magnetostrictive
    Zhang Zhen
    Chen Qingwei
    Mao Jianqin
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 462 - 466
  • [3] A Rheological Model for the Rate-Dependent Prandtl-Ishlinskii Model
    Al Janaideh, Mohammad
    Krejci, Pavel
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 6646 - 6651
  • [4] Modeling and identification of magnetostrictive hysteresis with a modified rate-independent Prandtl-Ishlinskii model
    Wang, Wei
    Yao, Jun-en
    CHINESE PHYSICS B, 2018, 27 (09)
  • [5] A Generalized Prandtl-Ishlinskii Model for Hysteresis Modeling in Electromagnetic Devices
    Al Saaideh, Mohammad
    Alatawneh, Natheer
    Al Janaideh, Mohammad
    2021 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2021, : 4513 - 4518
  • [6] Modeling of Hysteresis Nonlinearity in Piezoelectric Ceramic Micro-Positioning Platform based on Generalized Rate-Dependent Prandtl-Ishlinskii Model
    Luo, Yiling
    Zhou, Miaolei
    Xu, Rui
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 574 - 578
  • [7] System Identification of Micro Piezoelectric Actuators via Rate-Dependent Prandtl-Ishlinskii Hysteresis Model Based on a Modified PSO Algorithm
    Feng, Ying
    Li, Ying
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2021, 20 : 205 - 214
  • [8] Rate-dependent hysteresis model of piezoelectric using singularity free prandtl-ishlinskii model
    Tan, U. X.
    Win, T. L.
    Shee, C. Y.
    Ang, W. T.
    2007 INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION, 2007, : 149 - +
  • [9] Experimental characterization and control of a magnetic shape memory alloy actuator using the modified generalized rate-dependent Prandtl-Ishlinskii hysteresis model
    Shakiba, Saeid
    Zakerzadeh, Mohammad Reza
    Ayati, Moosa
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2018, 232 (05) : 506 - 518
  • [10] Inverse Rate-Dependent Prandtl-Ishlinskii Model for Feedforward Compensation of Hysteresis in a Piezomicropositioning Actuator
    Al Janaideh, Mohammad
    Krejci, Pavel
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2013, 18 (05) : 1498 - 1507