Shrinkage estimators for covariance matrices in spectral remote sensing

被引:0
作者
Theiler, James [1 ]
机构
[1] Los Alamos Natl Lab, Space Remote Sensing & Data Sci Grp, Los Alamos, NM 87545 USA
来源
ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGING XXX | 2024年 / 13031卷
基金
美国能源部;
关键词
Covariance matrix; Cross Validation; Regularization; Shrinkage; Maximum Likelihood; Hyperspectral imagery; Background estimation; Target detection;
D O I
10.1117/12.3013942
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This talk describes investigations of shrinkage parameter estimates for covariance matrices used in spectral processing of remote sensing imagery, such as for target, anomaly, or change detection. These estimates are derived in the context of cross-validated fiting of Gaussian likelihood models to the non-target background distribution. Here, the utility of these estimates is evaluated for Gaussian and non-Gaussian distributions. An alternative criterion, based on matched-filter detection of "generic" targets, is derived and compared to the estimated likelihood criterion as a way to choose the shrinkage parameter.
引用
收藏
页数:4
相关论文
共 4 条