Generating and Reviewing Programming Codes with Large Language Models A Systematic Mapping Study

被引:0
作者
Lins de Albuquerque, Beatriz Ventorini [1 ,2 ]
Souza da Cunha, Antonio Fernando [1 ,2 ]
Souza, Leonardo [1 ]
Matsui Siqueira, Sean Wolfgand [1 ]
dos Santos, Rodrigo Pereira [1 ]
机构
[1] Univ Fed Estado Rio de Janeiro UNIRIO, Rio De Janeiro, RJ, Brazil
[2] Petrobras Petr Brasileiro SA, Rio De Janeiro, RJ, Brazil
来源
PROCEEDINGS OF THE 20TH BRAZILIAN SYMPOSIUM ON INFORMATIONS SYSTEMS, SBSI 2024 | 2024年
关键词
Code Generation; code completion; code auto-suggestion; automatic refactoring; natural language models; transformer architecture; neural network; LLM; systematic mapping study; FIT;
D O I
10.1145/3658271.3658342
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Context: The proliferation of technologies based on Large Language Models (LLM) is reshaping various domains, also impacting on programming code creation and review. Problem: The decision-making process in adopting LLM in software development demands an understanding of associated challenges and diverse application possibilities. Solution: This study addresses the identified challenges linked to LLM utilization in programming code processes. It explores models, utilization strategies, challenges, and coping mechanisms, focusing on the perspectives of researchers in software development. IS Theory: Drawing on Task-Technology Fit (TTF) theory, the research examines the alignment between task characteristics in code generation and review, and LLM technology attributes to discern performance impacts and utilization patterns. Method: Employing the Systematic Mapping of the Literature method, the research analyzes 19 selected studies from digital databases-IEEE Digital Library, Compendex Engineering Village, and Scopus-out of 1,257 retrieved results. Summary of Results: The research reveals 23 models, 13 utilization strategies, 15 challenges, and 14 coping mechanisms associated with LLM in programming code processes, offering a comprehensive understanding of the application landscape. Contributions to IS: Contributing to the Information Systems (IS) field, This study provides valuable insights into the utilization of LLM in programming code generation and review. The identified models, strategies, challenges, and coping mechanisms offer practical guidance for decision-making processes related to LLM technology adoption. The research aims to support the IS community in effectively navigating the complexities of integrating large language models into the dynamic software development lifecycle.
引用
收藏
页数:10
相关论文
共 35 条
[1]  
Alexander Francis, 2022, 2022 1st International Conference on Software Engineering and Information Technology (ICoSEIT), P85, DOI 10.1109/ICoSEIT55604.2022.10029949
[2]  
Ansari AARH, 2022, INT J ADV COMPUT SC, V13, P842
[3]  
Araujo Renata Mendes, 2017, Information systems and the open world challenges
[4]  
Basili V. R., 1994, Encyclopedia of Software Engineering, V1, P2
[5]   MultiPL-E: A Scalable and Polyglot Approach to Benchmarking Neural Code Generation [J].
Cassano, Federico ;
Gouwar, John ;
Nguyen, Daniel ;
Nguyen, Sydney ;
Phipps-Costin, Luna ;
Pinckney, Donald ;
Yee, Ming-Ho ;
Zi, Yangtian ;
Anderson, Carolyn Jane ;
Feldman, Molly Q. ;
Guha, Arjun ;
Greenberg, Michael ;
Jangda, Abhinav .
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2023, 49 (07) :3675-3691
[6]   To What Extent do Deep Learning-based Code Recommenders Generate Predictions by Cloning Code from the Training Set? [J].
Ciniselli, Matteo ;
Pascarella, Luca ;
Bavota, Gabriele .
2022 MINING SOFTWARE REPOSITORIES CONFERENCE (MSR 2022), 2022, :167-178
[7]   Automated Source Code Generation and Auto-Completion Using Deep Learning: Comparing and Discussing Current Language Model-Related Approaches [J].
Cruz-Benito, Juan ;
Vishwakarma, Sanjay ;
Martin-Fernandez, Francisco ;
Faro, Ismael .
AI, 2021, 2 (01) :1-16
[8]   GitHub Copilot AI pair programmer: Asset or Liability? [J].
Dakhel, Arghavan Moradi ;
Majdinasab, Vahid ;
Nikanjam, Amin ;
Khomh, Foutse ;
Desmarais, Michel C. ;
Jiang, Zhen Ming .
JOURNAL OF SYSTEMS AND SOFTWARE, 2023, 203
[9]   Code Generation Using Machine Learning: A Systematic Review [J].
Dehaerne, Enrique ;
Dey, Bappaditya ;
Halder, Sandip ;
De Gendt, Stefan ;
Meert, Wannes .
IEEE ACCESS, 2022, 10 :82434-82455
[10]   "So what if ChatGPT wrote it?" Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy [J].
Dwivedi, Yogesh K. ;
Kshetri, Nir ;
Hughes, Laurie ;
Slade, Emma Louise ;
Jeyaraj, Anand ;
Kar, Arpan Kumar ;
Baabdullah, Abdullah M. ;
Koohang, Alex ;
Raghavan, Vishnupriya ;
Ahuja, Manju ;
Albanna, Hanaa ;
Albashrawi, Mousa Ahmad ;
Al-Busaidi, Adil S. ;
Balakrishnan, Janarthanan ;
Barlette, Yves ;
Basu, Sriparna ;
Bose, Indranil ;
Brooks, Laurence ;
Buhalis, Dimitrios ;
Carter, Lemuria ;
Chowdhury, Soumyadeb ;
Crick, Tom ;
Cunningham, Scott W. ;
Davies, Gareth H. ;
Davison, Robert M. ;
De, Rahul ;
Dennehy, Denis ;
Duan, Yanqing ;
Dubey, Rameshwar ;
Dwivedi, Rohita ;
Edwards, John S. ;
Flavian, Carlos ;
Gauld, Robin ;
Grover, Varun ;
Hu, Mei-Chih ;
Janssen, Marijn ;
Jones, Paul ;
Junglas, Iris ;
Khorana, Sangeeta ;
Kraus, Sascha ;
Larsen, Kai R. ;
Latreille, Paul ;
Laumer, Sven ;
Malik, F. Tegwen ;
Mardani, Abbas ;
Mariani, Marcello ;
Mithas, Sunil ;
Mogaji, Emmanuel ;
Nord, Jeretta Horn ;
O'Connor, Siobhan .
INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2023, 71