Granular Biphasic Colloidal Hydrogels for 3D Bioprinting

被引:4
作者
Deo, Kaivalya A. [1 ]
Murali, Aparna [1 ]
Tronolone, James J. [1 ]
Mandrona, Cole [1 ]
Lee, Hung Pang [1 ]
Rajput, Satyam [1 ]
Hargett, Sarah E. [1 ]
Selahi, Amirali [1 ]
Sun, Yuxiang [2 ]
Alge, Daniel L. [1 ,3 ]
Jain, Abhishek [1 ,4 ,5 ]
Gaharwar, Akhilesh K. [1 ,3 ,5 ,6 ,7 ]
机构
[1] Texas A&M Univ, Coll Engn, Biomed Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Coll Agr, Nutr, College Stn, TX 77843 USA
[3] Texas A&M Univ, Coll Engn, Mat Sci & Engn, College Stn, TX 77843 USA
[4] Texas A&M Hlth Sci Ctr, Sch Med, Med Physiol, Bryan, TX USA
[5] Houston Methodist Res Inst, Cardiovasc Sci, Houston, TX 77030 USA
[6] Texas A&M Univ, Interdisciplinary Grad Program Genet & Genom, College Stn, TX 77843 USA
[7] Texas A&M Univ, Ctr Remote Hlth Technol & Syst, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
3D bioprinting; drug delivery; granular colloidal hydrogels; hydrogel microparticles; nanocomposite; CELL; FABRICATION;
D O I
10.1002/adhm.202303810
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Granular hydrogels composed of hydrogel microparticles are promising candidates for 3D bioprinting due to their ability to protect encapsulated cells. However, to achieve high print fidelity, hydrogel microparticles need to jam to exhibit shear-thinning characteristics, which is crucial for 3D printing. Unfortunately, this overpacking can significantly impact cell viability, thereby negating the primary advantage of using hydrogel microparticles to shield cells from shear forces. To overcome this challenge, a novel solution: a biphasic, granular colloidal bioink designed to optimize cell viability and printing fidelity is introduced. The biphasic ink consists of cell-laden polyethylene glycol (PEG) hydrogel microparticles embedded in a continuous gelatin methacryloyl (GelMA)-nanosilicate colloidal network. Here, it is demonstrated that this biphasic bioink offers outstanding rheological properties, print fidelity, and structural stability. Furthermore, its utility for engineering complex tissues with multiple cell types and heterogeneous microenvironments is demonstrated, by incorporating beta-islet cells into the PEG microparticles and endothelial cells in the GelMA-nanosilicate colloidal network. Using this approach, it is possible to induce cell patterning, enhance vascularization, and direct cellular function. The proposed biphasic bioink holds significant potential for numerous emerging biomedical applications, including tissue engineering and disease modeling. A novel biphasic, granular colloidal bioink is introduced, and optimized for 3D bioprinting. Demonstrating superior rheological properties and print fidelity, this bioink ensures high cell viability. It supports complex tissue engineering with multiple cell types, enhancing cellular functions and vascularization, critical for advanced biomedical applications. image
引用
收藏
页数:12
相关论文
共 50 条
  • [21] The Effect of Agarose on 3D Bioprinting
    Gong, Chi
    Kong, Zhiyuan
    Wang, Xiaohong
    POLYMERS, 2021, 13 (22)
  • [22] 3D Bioprinting for Organ Regeneration
    Cui, Haitao
    Nowicki, Margaret
    Fisher, John P.
    Zhang, Lijie Grace
    ADVANCED HEALTHCARE MATERIALS, 2017, 6 (01)
  • [23] Progress in organ 3D bioprinting
    Liu, Fan
    Liu, Chen
    Chen, Qiuhong
    Ao, Qiang
    Tian, Xiaohong
    Fan, Jun
    Tong, Hao
    Wang, Xiaohong
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2018, 4 (01)
  • [24] The regulatory challenge of 3D bioprinting
    Mladenovska, Tajanka
    Choong, Peter F.
    Wallace, Gordon G.
    O'Connell, Cathal D.
    REGENERATIVE MEDICINE, 2023, 18 (08) : 659 - 674
  • [25] Nanocomposite bioinks for 3D bioprinting
    Cai, Yanli
    Chang, Soon Yee
    Gan, Soo Wah
    Ma, Sha
    Lu, Wen Feng
    Yen, Ching-Chiuan
    ACTA BIOMATERIALIA, 2022, 151 : 45 - 69
  • [26] Application areas of 3D bioprinting
    Ozbolat, Ibrahim T.
    Peng, Weijie
    Ozbolat, Veli
    DRUG DISCOVERY TODAY, 2016, 21 (08) : 1257 - 1271
  • [27] Advances in 3D Bioprinting of Biomimetic and Engineered Meniscal Grafts
    Lv, Haiyuan
    Deng, Guotao
    Lai, Jiaqi
    Yu, Yin
    Chen, Fei
    Yao, Jun
    MACROMOLECULAR BIOSCIENCE, 2023, 23 (12)
  • [28] Development of a hydrocolloid bio-ink for 3D bioprinting
    Yildirim, Ozum
    Arslan-Yildiz, Ahu
    BIOMATERIALS SCIENCE, 2022, 10 (23) : 6707 - 6717
  • [29] 3D Bioprinting of Artificial Tissues: Construction of Biomimetic Microstructures
    Luo, Yongxiang
    Lin, Xin
    Huang, Peng
    MACROMOLECULAR BIOSCIENCE, 2018, 18 (06)
  • [30] Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting
    Wang, Zongjie
    Kumar, Hitendra
    Tian, Zhenlin
    Jin, Xian
    Holzman, Jonathan F.
    Menard, Frederic
    Kim, Keekyoung
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (32) : 26859 - 26869