p53 Acetylation Exerts Critical Roles in Pressure Overload-Induced Coronary Microvascular Dysfunction and Heart Failure in Mice

被引:4
|
作者
He, Xiaochen [2 ]
Cantrell, Aubrey C. [1 ]
Williams, Quinesha A. [1 ]
Gu, Wei [3 ]
Chen, Yingjie [2 ]
Chen, Jian-Xiong [1 ]
Zeng, Heng [1 ]
机构
[1] Univ Mississippi, Med Ctr, Sch Med, Dept Pharmacol & Toxicol, Jackson, MS USA
[2] Univ Mississippi, Med Ctr, Sch Med, Dept Physiol & Biophys, Jackson, MS USA
[3] Columbia Univ, Inst Canc Genet, Dept Pathol & Cell Biol, New York, NY USA
基金
美国国家卫生研究院;
关键词
angiogenesis; coronary circulation; glycolysis; heart failure; hypertension; DIASTOLIC DYSFUNCTION; CARDIAC METABOLISM; FLOW RESERVE; ENDOTHELIAL DYSFUNCTION; GLYCOLYTIC INHIBITION; GLUCOSE TRANSPORTERS; MYOCARDIAL FIBROSIS; ANGIOGENESIS; HYPERTROPHY; ACTIVATION;
D O I
10.1161/ATVBAHA.123.319601
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND:Coronary microvascular dysfunction (CMD) has been shown to contribute to cardiac hypertrophy and heart failure (HF) with preserved ejection fraction. At this point, there are no proven treatments for CMD.METHODS:We have shown that histone acetylation may play a critical role in the regulation of CMD. By using a mouse model that replaces lysine with arginine at residues K98, K117, K161, and K162R of p53 (p534KR), preventing acetylation at these sites, we test the hypothesis that acetylation-deficient p534KR could improve CMD and prevent the progression of hypertensive cardiac hypertrophy and HF. Wild-type and p534KR mice were subjected to pressure overload by transverse aortic constriction to induce cardiac hypertrophy and HF.RESULTS:Echocardiography measurements revealed improved cardiac function together with a reduction of apoptosis and fibrosis in p534KR mice. Importantly, myocardial capillary density and coronary flow reserve were significantly improved in p534KR mice. Moreover, p534KR upregulated the expression of cardiac glycolytic enzymes and Gluts (glucose transporters), as well as the level of fructose-2,6-biphosphate; increased PFK-1 (phosphofructokinase 1) activity; and attenuated cardiac hypertrophy. These changes were accompanied by increased expression of HIF-1 alpha (hypoxia-inducible factor-1 alpha) and proangiogenic growth factors. Additionally, the levels of SERCA-2 were significantly upregulated in sham p534KR mice, as well as in p534KR mice after transverse aortic constriction. In vitro, p534KR significantly improved endothelial cell glycolytic function and mitochondrial respiration and enhanced endothelial cell proliferation and angiogenesis. Similarly, acetylation-deficient p534KR significantly improved coronary flow reserve and rescued cardiac dysfunction in SIRT3 (sirtuin 3) knockout mice.CONCLUSIONS:Our data reveal the importance of p53 acetylation in coronary microvascular function, cardiac function, and remodeling and may provide a promising approach to improve hypertension-induced CMD and to prevent the transition of cardiac hypertrophy to HF.
引用
收藏
页码:826 / 842
页数:17
相关论文
共 50 条
  • [31] The role of DPP-4 in pressure overload-induced heart failure
    Hirose, M.
    Takako, H.
    Hasegawa, H.
    Kobara, Y.
    Tadokoro, H.
    Takemura, G.
    Kobayashi, Y.
    EUROPEAN HEART JOURNAL, 2016, 37 : 1330 - 1330
  • [32] Aliskiren ameliorates pressure overload-induced heart hypertrophy and fibrosis in mice
    Weng, Li-qing
    Zhang, Wen-bin
    Ye, Yong
    Yin, Pei-pei
    Yuan, Jie
    Wang, Xing-xu
    Kang, Le
    Jiang, Sha-sha
    You, Jie-yun
    Wu, Jian
    Gong, Hui
    Ge, Jun-bo
    Zou, Yun-zeng
    ACTA PHARMACOLOGICA SINICA, 2014, 35 (08) : 1005 - 1014
  • [33] Protective effect of resveratrol against pressure overload-induced heart failure
    Gupta, Prakash K.
    DiPette, Donald J.
    Supowit, Scott C.
    FOOD SCIENCE & NUTRITION, 2014, 2 (03): : 218 - 229
  • [34] Aliskiren ameliorates pressure overload-induced heart hypertrophy and fibrosis in mice
    Li-qing Weng
    Wen-bin Zhang
    Yong Ye
    Pei-pei Yin
    Jie Yuan
    Xing-xu Wang
    Le Kang
    Sha-sha Jiang
    Jie-yun You
    Jian Wu
    Hui Gong
    Jun-bo Ge
    Yun-zeng Zou
    Acta Pharmacologica Sinica, 2014, 35 : 1005 - 1014
  • [35] Roles of prostanoids in pressure overload-induced cardiomyocyte hypertrophy and cardiac fibrosis in mice
    Hara, A
    Yuhki, K
    Narumiya, S
    Ushikubi, F
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2005, 97 : 193P - 193P
  • [36] Pressure overload-induced cardiac remodeling and dysfunction in the absence of interleukin 6 in mice
    Lai, N. Chin
    Gao, Mei Hua
    Tang, Eric
    Tang, Ruoying
    Guo, Tracy
    Dalton, Nancy D.
    Deng, Aihua
    Tang, Tong
    LABORATORY INVESTIGATION, 2012, 92 (11) : 1518 - 1526
  • [37] Vitamin D attenuates pressure overload-induced cardiac remodeling and dysfunction in mice
    Zhang, Liang
    Yan, Xiao
    Zhang, Yun-Long
    Bai, Jie
    Hidru, Tesfaldet Habtemariam
    Wang, Qing-Shan
    Li, Hui-Hua
    JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2018, 178 : 293 - 302
  • [38] Cardiac fibroblasts acquire properties of matrifibrocytes in vitro and in mice with pressure overload-induced congestive heart failure
    Herum, K. M.
    Gilles, G.
    Romaine, A.
    Melleby, A. O.
    Christensen, G.
    McCulloch, A. D.
    Brakebusch, C. H.
    EUROPEAN HEART JOURNAL, 2020, 41 : 3741 - 3741
  • [39] The Effects of Guizhi Gancao Decoction on Pressure Overload-Induced Heart Failure and Posttranslational Modifications of Tubulin in Mice
    Chen, Hui-hua
    Zhao, Pei
    Tian, Jing
    Guo, Wei
    Xu, Ming
    Zhang, Chen
    Lu, Rong
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2017, 2017
  • [40] Cardioprotective Effects of Dipeptidyl Peptidase-4 Inhibition on Pressure Overload-induced Heart Failure in Mice
    Hasegawa, Hiroshi
    Kobara, Yuka
    Kameda, Yoshihito
    Kubota, Akihiko
    Tadokoro, Hiroyuki
    Kobayashi, Yoshio
    Komuro, Issei
    Takano, Hiroyuki
    CIRCULATION, 2012, 126 (21)