State-of-Charge Estimation of Lithium-Ion Battery Based on Convolutional Neural Network Combined with Unscented Kalman Filter

被引:3
|
作者
Ma, Hongli [1 ]
Bao, Xinyuan [1 ]
Lopes, Antonio [2 ]
Chen, Liping [1 ]
Liu, Guoquan [3 ]
Zhu, Min [1 ]
机构
[1] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
[2] Univ Porto, Fac Engn, LAETA, INEGI, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[3] East China Univ Technol, Sch Mech & Elect Engn, Nanchang 330013, Peoples R China
来源
BATTERIES-BASEL | 2024年 / 10卷 / 06期
关键词
state-of-charge; lithium-ion battery; convolutional neural network; unscented Kalman filter; OPEN-CIRCUIT VOLTAGE;
D O I
10.3390/batteries10060198
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Estimation of the state-of-charge (SOC) of lithium-ion batteries (LIBs) is fundamental to assure the normal operation of both the battery and battery-powered equipment. This paper derives a new SOC estimation method (CNN-UKF) that combines a convolutional neural network (CNN) and an unscented Kalman filter (UKF). The measured voltage, current and temperature of the LIB are the input of the CNN. The output of the hidden layer feeds the linear layer, whose output corresponds to an initial network-based SOC estimation. The output of the CNN is then used as the input of a UKF, which, using self-correction, yields high-precision SOC estimation results. This method does not require tuning of network hyperparameters, reducing the dependence of the network on hyperparameter adjustment and improving the efficiency of the network. The experimental results show that this method has higher accuracy and robustness compared to SOC estimation methods based on CNN and other advanced methods found in the literature.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] State-of-Charge Estimation of Lithium-ion Battery Based on a Combined Method of Neural Network and Unscented Kalman filter
    Hosseininasab, Seyedmehdi
    Wan, Zhiwen
    Bender, Tim
    Vagnoni, Giovanni
    Bauer, Lennart
    2020 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2020,
  • [2] State of charge estimation of vehicle lithium-ion battery based on unscented Kalman filter
    Chen, Junlin
    Wang, Chun
    Pu, Long
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1934 - 1938
  • [3] Estimation of state-of-charge based on unscented Kalman particle filter for storage lithium-ion battery
    Gao, Shengwei
    Kang, Mingren
    Li, Longnv
    Liu, Xiaoming
    JOURNAL OF ENGINEERING-JOE, 2019, (16): : 1858 - 1863
  • [4] State of charge estimation of lithium-ion battery based on extended Kalman filter and unscented Kalman filter techniques
    Priya, Rajbala Purnima
    Sanjay, R.
    Sakile, Rajakumar
    ENERGY STORAGE, 2023, 5 (03)
  • [5] State of Charge Estimation of Lithium-Ion Battery Based on Improved Adaptive Unscented Kalman Filter
    Xing, Jie
    Wu, Peng
    SUSTAINABILITY, 2021, 13 (09)
  • [6] State-of-Charge Estimation for Lithium-ion Battery using Busse's Adaptive Unscented Kalman Filter
    Yao, Low Wen
    Aziz, J. A.
    Idris, N. R. N.
    2015 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2015, : 227 - 232
  • [7] Parallel Arithmetical Unscented Kalman Filter Technic for Lithium-ion Battery State-of-Charge Estimation
    Liu, Weilong
    Wang, Liye
    Wang, Lifang
    Liao, Chenglin
    Proceedings of the 2016 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016), 2016, 96 : 669 - 675
  • [8] State-of-Charge Estimation of Lithium-ion Batteries using Extended Kalman filter and Unscented Kalman filter
    Jokic, Ivan
    Zecevic, Zarko
    Krstajic, Bozo
    2018 23RD INTERNATIONAL SCIENTIFIC-PROFESSIONAL CONFERENCE ON INFORMATION TECHNOLOGY (IT), 2018,
  • [9] Lithium-Ion Battery Parameters and State-of-Charge Joint Estimation Based on H-Infinity and Unscented Kalman Filters
    Yu, Quanqing
    Xiong, Rui
    Lin, Cheng
    Shen, Weixiang
    Deng, Junjun
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (10) : 8693 - 8701
  • [10] State of Charge Estimation for Lithium-Ion Battery Based on Unscented Kalman Filter and Long Short-Term Memory Neural Network
    Zeng, Yi
    Li, Yan
    Yang, Tong
    BATTERIES-BASEL, 2023, 9 (07):