Local activation of CA1 pyramidal cells induces theta-phase precession

被引:4
作者
Sloin, Hadas E. [1 ,2 ,4 ]
Spivak, Lidor [1 ,2 ]
Levi, Amir [1 ,2 ]
Gattegno, Roni [1 ]
Someck, Shirly [1 ,2 ]
Stark, Eran [1 ,2 ,3 ]
机构
[1] Tel Aviv Univ, Sagol Sch Neurosci, IL-6997801 Tel Aviv, Israel
[2] Tel Aviv Univ, Dept Physiol & Pharmacol, Fac Med, IL-6997801 Tel Aviv, Israel
[3] Univ Haifa, Sagol Dept Neurobiol, IL-3103301 Haifa, Israel
[4] Univ Oxford, Dept Physiol Anat & Genet, Oxford, England
基金
加拿大健康研究院; 欧洲研究理事会; 以色列科学基金会;
关键词
HIPPOCAMPAL PLACE CELLS; MEDIAL ENTORHINAL CORTEX; GAMMA OSCILLATIONS; SEQUENCES; NEURONS; DYNAMICS; MODEL; CODE; COMPUTATION; POPULATIONS;
D O I
10.1126/science.adk2456
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hippocampal theta-phase precession is involved in spatiotemporal coding and in generating multineural spike sequences, but how precession originates remains unresolved. To determine whether precession can be generated directly in hippocampal area CA1 and disambiguate multiple competing mechanisms, we used closed-loop optogenetics to impose artificial place fields in pyramidal cells of mice running on a linear track. More than one-third of the CA1 artificial fields exhibited synthetic precession that persisted for a full theta cycle. By contrast, artificial fields in the parietal cortex did not exhibit synthetic precession. These findings are incompatible with precession models based on inheritance, dual-input, spreading activation, inhibition-excitation summation, or somato-dendritic competition. Thus, a precession generator resides locally within CA1.
引用
收藏
页码:551 / 558
页数:7
相关论文
共 92 条
  • [61] Spike sorting for large, dense electrode arrays
    Rossant, Cyrille
    Kadir, Shabnam N.
    Goodman, Dan F. M.
    Schulman, John
    Hunter, Maximilian L. D.
    Saleem, Aman B.
    Grosmark, Andres
    Belluscio, Mariano
    Denfield, George H.
    Ecker, Alexander S.
    Tolias, Andreas S.
    Solomon, Samuel
    Buzsaki, Gyoergy
    Carandini, Matteo
    Harris, Kenneth D.
    [J]. NATURE NEUROSCIENCE, 2016, 19 (04) : 634 - +
  • [62] The shaping of intrinsic membrane potential oscillations: positive/negative feedback, ionic resonance/amplification, nonlinearities and time scales
    Rotstein, Horacio G.
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2017, 42 (02) : 133 - 166
  • [63] Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition
    Royer, Sebastien
    Zemelman, Boris V.
    Losonczy, Attila
    Kim, Jinhyun
    Chance, Frances
    Magee, Jeffrey C.
    Buzsaki, Gyoergy
    [J]. NATURE NEUROSCIENCE, 2012, 15 (05) : 769 - 775
  • [64] The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity
    Schlesiger, Magdalene I.
    Cannova, Christopher C.
    Boublil, Brittney L.
    Hales, Jena B.
    Mankin, Emily A.
    Brandon, Mark P.
    Leutgeb, Jill K.
    Leibold, Christian
    Leutgeb, Stefan
    [J]. NATURE NEUROSCIENCE, 2015, 18 (08) : 1123 - +
  • [65] Single-Trial Phase Precession in the Hippocampus
    Schmidt, Robert
    Diba, Kamran
    Leibold, Christian
    Schmitz, Dietmar
    Buzsaki, Gyoergy
    Kempter, Richard
    [J]. JOURNAL OF NEUROSCIENCE, 2009, 29 (42) : 13232 - 13241
  • [66] Scalable representation of time in the hippocampus
    Shimbo, Akihiro
    Izawa, Ei-Ichi
    Fujisawa, Shigeyoshi
    [J]. SCIENCE ADVANCES, 2021, 7 (06):
  • [67] Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm
    Sirota, Anton
    Montgomery, Sean
    Fujisawa, Shigeyoshi
    Isomura, Yoshikazu
    Zugaro, Michael
    Buzsaki, Gyoergy
    [J]. NEURON, 2008, 60 (04) : 683 - 697
  • [68] Skaggs WE, 1996, HIPPOCAMPUS, V6, P149, DOI 10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO
  • [69] 2-K
  • [70] Sloin Hadas, 2023, Dryad, DOI 10.5061/DRYAD.1C59ZW431