Resource-efficient design of ultra-high performance concretes

被引:0
|
作者
Rai, Bijaya [1 ]
Boisvert-Cotulio, Christopher [1 ]
Wille, Kay [1 ]
机构
[1] Univ Connecticut, Dept Civil & Environm Engn, 261 Glenbrook Rd,Unit 3037, Storrs, CT 06269 USA
来源
JOURNAL OF BUILDING ENGINEERING | 2024年 / 92卷
关键词
Carbon footprint; Cost; Non-proprietary; Resource efficiency; Ultra -high performance concrete; UHPC; TENSILE BEHAVIOR; SILICA-FUME; MIX DESIGN; CEMENT; SUSTAINABILITY; STRENGTH; MODULI; ROCKS; SIZE;
D O I
10.1016/j.jobe.2024.109630
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This research introduced and implemented the resource-efficiency factor (R) for the development of non-proprietary UHPC considering relative workability, compressive strength, cost, and carbon footprint (CFP) of the UHPC matrix. The effect of each of these four parameters of material performance is linked with the structural performance of a reinforced beam, a short column and a closure pour connection. The process of resource-efficient design has been exemplified by the development of non-proprietary UHPC using suitable materials available in the New England area in the United States. At first, different locally available materials and their combinations were selected to design 30 UHPC matrices at same proportion. Then the R-factor was used to evaluate their resource-efficiency leading to an optimized matrix with R-factor of 1.36. Afterwards, optimizing the aggregate to cement (A/C) ratio resulted in an R-factor of 2 which is 67 % higher than that of most non-proprietary UHPC matrices in the US. In the next step, an optimized matrix was used to design UHPCs with different A/C ratios and one type of steel fiber reinforcement of volume fractions of 1 %, 1.5 % and 2 %. The results were compared to commercially available UHPC mixtures and non-proprietary UHPC mixtures in the US. In addition, the optimized UHPC matrix was further optimized by proportioning the amount of silica fume and ground granulated blast furnace slag which increased the R-factor by 6 %. Overall, this research showed that UHPC can be successfully designed using the R-factor methodology. Compressive strength of 156 MPa-233 MPa were achieved without the use of special treatment at current material cost and CFP of about US$500/m3 and 500 kg/m3 without fibers, and in between US$700 to US$1100/m3 and 800 kg/m3 with fibers available in the US.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Internal curing capabilities of natural zeolite to improve the hydration of ultra-high performance concrete
    Kazemian, Maziar
    Shafei, Behrouz
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 340
  • [32] Decoupling the physical and chemical effects of silica fume in ultra-high performance concrete (UHPC)
    Ji, Xuping
    Han, Fangyu
    Pan, Tinghong
    Zhao, Wenhao
    Sha, Jianfang
    Liu, Jianzhong
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 444
  • [33] Multi-Criteria Risk Analysis of Ultra-High Performance Concrete Application in Structures
    Tajasosi, Sama
    Saradar, Ashkan
    Barandoust, Jalil
    Moein, Mohammad Mohtasham
    Zeinali, Reza
    Karakouzian, Moses
    CIVILENG, 2023, 4 (03): : 1016 - 1035
  • [34] Sustainability assessment of ultra-high performance concrete made with various supplementary cementitious materials
    Farahzadi, Leila
    Nia, Saeed Bozorgmehr
    Shafei, Behrouz
    Kioumarsi, Mahdi
    CLEANER MATERIALS, 2025, 15
  • [35] Shear behaviour of ultra-high performance concrete beams with openings
    Elsayed, Mahmoud
    Badawy, Samah
    Tayeh, Bassam A.
    Elymany, Magdy
    Salem, Mohamed
    ElGawady, Mohamed
    STRUCTURES, 2022, 43 : 546 - 558
  • [36] A review on design and performance regulation of ultra-high performance concrete (UHPC)
    Mao, Yizhong
    Hu, Xiang
    Yang, Li
    Shi, Caijun
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2024,
  • [37] Effects of autoclave curing and fly ash on mechanical properties of ultra-high performance concrete
    Chen, Tiefeng
    Gao, Xiaojian
    Ren, Miao
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 158 : 864 - 872
  • [38] Review of flexural behavior and design recommendations for ultra-high performance concrete members
    Soliman, Amr Ashraf
    Kumar, Dhanendra
    Ranade, Ravi
    Heard, William F.
    Williams, Brett A.
    STRUCTURES, 2024, 62
  • [39] Mechanical performance of affordable and eco-efficient ultra-high performance concrete (UHPC) containing recycled tyre steel fibres
    Isa, M. N.
    Pilakoutas, Kypros
    Guadagnini, Maurizio
    Angelakopoulos, Harris
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 255
  • [40] Mechanical and fracture characteristics of ultra-high performance concretes reinforced with hybridization of steel and glass fibers
    Muhyaddin, Guler Fakhraddin
    HELIYON, 2023, 9 (07)