Learning MDL Logic Programs from Noisy Data

被引:0
作者
Hocquette, Celine [1 ]
Niskanen, Andreas [2 ]
Jarvisalo, Matti [2 ]
Cropper, Andrew [1 ]
机构
[1] Univ Oxford, Oxford, England
[2] Univ Helsinki, Helsinki, Finland
来源
THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 9 | 2024年
基金
英国工程与自然科学研究理事会;
关键词
ILP; INDUCTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many inductive logic programming approaches struggle to learn programs from noisy data. To overcome this limitation, we introduce an approach that learns minimal description length programs from noisy data, including recursive programs. Our experiments on several domains, including drug design, game playing, and program synthesis, show that our approach can outperform existing approaches in terms of predictive accuracies and scale to moderate amounts of noise.
引用
收藏
页码:10553 / 10561
页数:9
相关论文
共 53 条
[1]  
Ahlgren J, 2013, J MACH LEARN RES, V14, P3649
[2]  
Bacchus F, 2021, FRONT ARTIF INTEL AP, P929, DOI 10.3233/FAIA201008
[3]   From SMT to ASP: Solver-Based Approaches to Solving Datalog Synthesis-as-Rule-Selection Problems [J].
Bembenek, Aaron ;
Greenberg, Michael ;
Chong, Stephen .
PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2023, 7 (POPL) :185-217
[4]   Top-down induction of first-order logical decision trees [J].
Blockeel, H ;
De Raedt, L .
ARTIFICIAL INTELLIGENCE, 1998, 101 (1-2) :285-297
[5]  
Bordes A., 2013, P 27 ANN C NEUR INF, P2787
[6]  
Bramley Neil, 2018, P 40 ANN C COGN SCI
[7]   COMPLEXITY-BASED INDUCTION [J].
CONKLIN, D ;
WITTEN, IH .
MACHINE LEARNING, 1994, 16 (03) :203-225
[8]  
Corapi Domenico, 2012, Inductive Logic Programming. 21st International Conference, ILP 2011. Revised Selected Papers, P91, DOI 10.1007/978-3-642-31951-8_12
[9]  
Cropper A., 2023, ECAI 2023 26 EUROPEA, P501
[10]  
Cropper A, 2022, J ARTIF INTELL RES, V74, P765