Evaluating machine learning approaches for aboveground biomass prediction in fragmented high-elevated forests using multi-sensor satellite data

被引:8
|
作者
Qadeer, Asim [1 ]
Shakir, Muhammad [1 ]
Wang, Li [2 ]
Talha, Syed Muhammad [1 ]
机构
[1] Inst Space Technol, Dept Space Sci, Islamabad 44000, Pakistan
[2] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
关键词
Above -ground biomass; Carbon stocks; SAR-Optical data fusion; Variable selection; Hyperparameter optimization; Gradient boosting algorithms; Ensemble learning; Google Earth Engine; LANDSAT; 8; DENSITY; SCALE;
D O I
10.1016/j.rsase.2024.101291
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate aboveground biomass (AGB) estimations over large areas are essential for assessing carbon stocks and forest resources. This study evaluated machine learning approaches for AGB modeling in Pakistan 's mountainous region of Diamir district using freely available Sentinel-1 and Sentinel-2 data and 171 field-measured AGB training points. Random Forest, Gradient Tree Boosting, CatBoost, LightGBM, and XGBoost algorithms were implemented and optimized. Models were developed using individual and combined datasets. Sentinel-2 optical data outperformed Sentinel-1 radar data, but the fusion of both sensors achieved the highest accuracy (R2 > 0.7, RMSE = 105.64 Mg/ha, MAE = 85.34 Mg/ha). Tree canopy height was the most informative predictor for this data, besides terrain variables and radar textures. The machine learning models significantly improved AGB estimates compared to traditional regression techniques, and gradient boosters outperformed Random Forest. This research demonstrates the potential of multi-sensor remote sensing data and advanced algorithms for forest biomass mapping in complex terrain, with modeling accuracies reaching root mean squared errors below 90 Mg/ha. The framework provides an effective solution for monitoring biomass using freely available satellite data. Further refinements include integrating higher-resolution optical data and additional field samples for better validation. This study contributes to remote sensing capabilities for assessing vegetation carbon stocks and dynamics.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest
    Ghosh, Sujit Madhab
    Behera, Mukunda Dev
    APPLIED GEOGRAPHY, 2018, 96 : 29 - 40
  • [2] Optimising carbon fixation through agroforestry: Estimation of aboveground biomass using multi-sensor data synergy and machine learning
    Singh, R. K.
    Biradar, C. M.
    Behera, M. D.
    Prakash, A. J.
    Das, P.
    Mohanta, M. R.
    Krishna, G.
    Dogra, A.
    Dhyani, S. K.
    Rizvi, J.
    ECOLOGICAL INFORMATICS, 2024, 79
  • [3] Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach
    Bispo, Polyanna da Conceicao
    Rodriguez-Veiga, Pedro
    Zimbres, Barbara
    de Miranda, Sabrina Couto
    Giusti Cezare, Cassio Henrique
    Fleming, Sam
    Baldacchino, Francesca
    Louis, Valentin
    Rains, Dominik
    Garcia, Mariano
    Espirito-Santo, Fernando Del Bon
    Roitman, Iris
    Pacheco-Pascagaza, Ana Maria
    Gou, Yaqing
    Roberts, John
    Barrett, Kirsten
    Ferreira, Laerte Guimaraes
    Shimbo, Julia Zanin
    Alencar, Ane
    Bustamante, Mercedes
    Woodhouse, Iain Hector
    Sano, Edson Eyji
    Ometto, Jean Pierre
    Tansey, Kevin
    Balzter, Heiko
    REMOTE SENSING, 2020, 12 (17)
  • [4] Indicating Saturation Limits of Multi-sensor Satellite Data in Estimating Aboveground Biomass of a Mangrove Forest
    Jagadish, Buddolla
    Behera, Mukunda Dev
    Prakash, A. Jaya
    Paramanik, Somnath
    Ghosh, Sujit M.
    Patnaik, C.
    Das, A.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, 52 (11) : 2483 - 2500
  • [5] Dominant Expression of SAR Backscatter in Predicting Aboveground Biomass: Integrating Multi-Sensor Data and Machine Learning in Sikkim Himalaya
    A. Jaya Prakash
    Sujoy Mudi
    Somnath Paramanik
    Mukunda Dev Behera
    Shanu Shekhar
    Narpati Sharma
    Bikash Ranjan Parida
    Journal of the Indian Society of Remote Sensing, 2024, 52 : 871 - 883
  • [6] Dominant Expression of SAR Backscatter in Predicting Aboveground Biomass: Integrating Multi-Sensor Data and Machine Learning in Sikkim Himalaya
    Prakash, A. Jaya
    Mudi, Sujoy
    Paramanik, Somnath
    Behera, Mukunda Dev
    Shekhar, Shanu
    Sharma, Narpati
    Parida, Bikash Ranjan
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, 52 (04) : 871 - 883
  • [7] Evaluation of statistical and machine learning models using satellite data to estimate aboveground biomass: A study in Vietnam Tropical Forests
    Nguyen, Thuy Phuong
    Nguyen, Phuc Khoa
    Nguyen, Huu Ngu
    Tran, Thanh Duc
    Pham, Gia Tung
    Le, Thai Hung
    Le, Dinh Huy
    Nguyen, Trung Hai
    Nguyen, Van Binh
    FOREST SCIENCE AND TECHNOLOGY, 2024, 20 (04) : 370 - 382
  • [8] Estimation of aboveground biomass in mangrove forests using high-resolution satellite data
    Hirata, Yasumasa
    Tabuchi, Ryuichi
    Patanaponpaiboon, Pipat
    Poungparn, Sasitorn
    Yoneda, Reiji
    Fujioka, Yoshimi
    JOURNAL OF FOREST RESEARCH, 2014, 19 (01) : 34 - 41
  • [9] The Estimation of Forest Aboveground Biomass Using Multiple Satellite Data and Different Machine Learning Models
    Ozdemir, Eren Gursoy
    Abdikan, Saygin
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [10] A low-cost approach for soil moisture prediction using multi-sensor data and machine learning algorithm
    Nguyen, Thu Thuy
    Ngo, Huu Hao
    Guo, Wenshan
    Chang, Soon Woong
    Nguyen, Dinh Duc
    Nguyen, Chi Trung
    Zhang, Jian
    Liang, Shuang
    Bui, Xuan Thanh
    Hoang, Ngoc Bich
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 833