From informal to formal: scientific knowledge role transition prediction
被引:1
|
作者:
Yang, Jinqing
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Informat Management, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Sch Informat Management, Wuhan 430079, Peoples R China
Yang, Jinqing
[1
]
Liu, Zhifeng
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Dept Informat Management, Beijing 100871, Peoples R ChinaCent China Normal Univ, Sch Informat Management, Wuhan 430079, Peoples R China
Liu, Zhifeng
[2
]
Huang, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Informat Management, Wuhan 430072, Peoples R ChinaCent China Normal Univ, Sch Informat Management, Wuhan 430079, Peoples R China
Huang, Yong
[3
]
机构:
[1] Cent China Normal Univ, Sch Informat Management, Wuhan 430079, Peoples R China
[2] Peking Univ, Dept Informat Management, Beijing 100871, Peoples R China
[3] Wuhan Univ, Sch Informat Management, Wuhan 430072, Peoples R China
Comprehending the patterns of knowledge evolution benefits funding agencies, policymakers, and researchers in developing creative ideas. We introduce the notation of scientific knowledge role transition as an evolution from informal to formal. We investigate how different factors affect the role transition of scientific knowledge, considering the two primary levels-transition pace and transition possibility. The interpretive machine learning models are conducted to discover that the Gradient Boosting classifier performs better for predicting transition possibility, and Random Forests regression is the most effective for predicting transition pace. Specifically, knowledge attribute features have a more obvious effect on the transition probability, while knowledge network structure has a greater effect on the transition pace. We further find that knowledge relatedness and citation number have negative effects on knowledge role transition, while adoption frequency, indegree centrality in the knowledge citation network, node number of the egocentric co-occurrence network, and journal impact of scientific knowledge have positive effects. The aforementioned discoveries enhance our comprehension of scientific knowledge evolution patterns and provide insight into the trajectory of scientific and technological advancement.
机构:
Cent China Normal Univ, Sch Informat Management, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Sch Informat Management, Wuhan 430079, Peoples R China
Yang, Jinqing
Hu, Jiming
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Informat Management, Wuhan 430072, Peoples R ChinaCent China Normal Univ, Sch Informat Management, Wuhan 430079, Peoples R China
机构:
Stanford Univ, Ctr Design Res, 424 Panama Mall,Bldg 560, Stanford, CA 94305 USAStanford Univ, Ctr Design Res, 424 Panama Mall,Bldg 560, Stanford, CA 94305 USA
Bonakdar, Amir
Frankenberger, Karolin
论文数: 0引用数: 0
h-index: 0
机构:
Univ St Gallen, Inst Technol Management, Dufourstr 40a, CH-9000 St Gallen, SwitzerlandStanford Univ, Ctr Design Res, 424 Panama Mall,Bldg 560, Stanford, CA 94305 USA
Frankenberger, Karolin
Bader, Martin A.
论文数: 0引用数: 0
h-index: 0
机构:
Tech Hsch Ingolstadt, THI Business Sch, Esplanade 10, D-85049 Ingolstadt, GermanyStanford Univ, Ctr Design Res, 424 Panama Mall,Bldg 560, Stanford, CA 94305 USA
Bader, Martin A.
Gassmann, Oliver
论文数: 0引用数: 0
h-index: 0
机构:
Univ St Gallen, Inst Technol Management, Dufourstr 40a, CH-9000 St Gallen, SwitzerlandStanford Univ, Ctr Design Res, 424 Panama Mall,Bldg 560, Stanford, CA 94305 USA
机构:
Univ Johannesburg, Ctr Competit Regulat & Econ Dev CCRED, Johannesburg, South Africa
Univ Johannesburg, DSI NRF South African Res Chair Ind Dev SARChI ID, Johannesburg, South AfricaUniv Johannesburg, Ctr Competit Regulat & Econ Dev CCRED, Johannesburg, South Africa