Positive expansions of extended Schur functions in the Young quasisymmetric Schur basis

被引:0
作者
Marcum, Chloe' [1 ]
Niese, Elizabeth [2 ]
机构
[1] Univ Kentucky, Lexington, KY 40506 USA
[2] Marshall Univ, Huntington, WV USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2024年 / 17卷 / 02期
关键词
quasisymmetric functions; Schur polynomials; extended Schur functions; dual immaculate functions;
D O I
10.2140/involve.2024.17.217
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are a number of Schur -like bases for the quasisymmetric functions. Extended Schur functions, introduced by Assaf and Searles, expand positively in the Young quasisymmetric Schur basis for certain indexing compositions. We establish this expansion using an algorithm defined by Allen, Hallam, and Mason restricted to the generating objects of the extended Schur functions.
引用
收藏
页码:217 / 232
页数:19
相关论文
共 7 条
  • [1] Dual immaculate quasisymmetric functions expand positively into Young quasisymmetric Schur functions
    Allen, Edward E.
    Hallam, Joshua
    Mason, Sarah K.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 157 : 70 - 108
  • [2] Kohnert Polynomials
    Assaf, Sami
    Searles, Dominic
    [J]. EXPERIMENTAL MATHEMATICS, 2019, : 93 - 119
  • [3] A Lift of the Schur and Hall-Littlewood Bases to Non-commutative Symmetric Functions
    Berg, Chris
    Bergeron, Nantel
    Saliola, Franco
    Serrano, Luis
    Zabrocki, Mike
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (03): : 525 - 565
  • [4] Gessel I., 1984, Contemp. Math., V34, P289, DOI DOI 10.1090/CONM/034/777705
  • [5] Quasisymmetric Schur functions
    Haglund, J.
    Luoto, K.
    Mason, S.
    van Willigenburg, S.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (02) : 463 - 490
  • [6] Luoto K, 2013, INTRO QUASISYMMETRIC
  • [7] Row-Strict Quasisymmetric Schur Functions
    Mason, Sarah
    Remmel, Jeffrey
    [J]. ANNALS OF COMBINATORICS, 2014, 18 (01) : 127 - 148