The research progress on COF solid-state electrolytes for lithium batteries

被引:2
|
作者
Wang, Yimou [1 ]
Hao, Qinglin [1 ]
Lv, Qing [1 ]
Shang, Xinchao [1 ]
Wu, Mingbo [1 ]
Li, Zhongtao [1 ]
机构
[1] China Univ Petr East China, Coll Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
基金
国家重点研发计划;
关键词
COVALENT ORGANIC FRAMEWORKS; CARBON; CONVERSION; EFFICIENT; STRATEGY;
D O I
10.1039/d4cc02262a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal batteries have garnered significant attention due to their high energy density and broad application prospects. However, the practical use of traditional liquid electrolytes is constrained by safety and stability challenges. In the exploration of novel electrolytes, solid-state electrolyte materials have emerged as a focal point. Covalent organic frameworks (COFs), with their large conjugated structures and unique electronic properties, are gradually gaining attention as an emerging class of solid-state electrolyte materials. In recent years, outstanding electrochemical performance has been achieved through the design and synthesis of various types of COF-based solid-state electrolytes, along with successful integration with other functional materials. This review will provide an overview of the research progress on COFs as solid-state electrolyte materials for lithium metal batteries and offer insights into their future potential in battery technology. This review focuses on the role of different COFs as solid-state electrolytes, aiming to guide the development of electrolyte materials and battery technology.
引用
收藏
页码:10046 / 10063
页数:18
相关论文
共 50 条
  • [41] The role of polymers in lithium solid-state batteries with inorganic solid electrolytes
    Sen, Sudeshna
    Trevisanello, Enrico
    Niemoeller, Elard
    Shi, Bing-Xuan
    Simon, Fabian J.
    Richter, Felix H.
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 18701 - 18732
  • [42] All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes
    Jung, Yun-Chae
    Lee, Sang-Min
    Choi, Jeong-Hee
    Jang, Seung Soon
    Kim, Dong-Won
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (04) : A704 - A710
  • [43] Solid-state lithium batteries with sulfide-based solid electrolytes
    Takada, K
    Nakano, S
    Inada, T
    Kajiyama, A
    Kouguchi, M
    Sasaki, H
    Kondo, S
    Watanabe, M
    Murayama, M
    Kanno, R
    SOLID STATE IONICS: THE SCIENCE AND TECHNOLOGY OF IONS IN MOTION, 2004, : 425 - 436
  • [44] Recent progress of solid-state lithium batteries in China
    Wu, Dengxu
    Chen, Liquan
    Li, Hong
    Wu, Fan
    APPLIED PHYSICS LETTERS, 2022, 121 (12)
  • [45] Research Progress on the Enhancement and Modification of PVDF-Based Polymer Electrolytes and Their Applications in Solid-State Lithium Metal Batteries
    Zhao, Fangyuan
    Wu, Jialong
    Qin, Chu
    Jiang, Zhong-Jie
    Chen, Guangliang
    Maiyalagan, T.
    Jiang, Zhongqing
    CHEMISTRY-AN ASIAN JOURNAL, 2025,
  • [46] Recent progress and perspectives on metal-organic frameworks as solid-state electrolytes for lithium batteries
    Wang, Xin
    Jin, Sheng
    Liu, Zhiliang
    CHEMICAL COMMUNICATIONS, 2024, 60 (41) : 5369 - 5390
  • [47] Progress of Polymer Electrolytes Worked in Solid-State Lithium Batteries for Wide-Temperature Application
    Hu, Long
    Gao, Xue
    Wang, Hui
    Song, Yun
    Zhu, Yongli
    Tao, Zhijun
    Yuan, Bin
    Hu, Renzong
    SMALL, 2024, 20 (31)
  • [48] Recent Progress in Flame-Retardant Polymer Electrolytes for Solid-State Lithium Metal Batteries
    Liao, Yubin
    Xu, Xijun
    Luo, Xiongwei
    Ji, Shaomin
    Zhao, Jingwei
    Liu, Jun
    Huo, Yanping
    BATTERIES-BASEL, 2023, 9 (09):
  • [49] Garnet-type solid-state electrolytes and interfaces in all-solid-state lithium batteries: progress and perspective
    Huang, Jian
    Liang, Feng
    Hou, Minjie
    Zhang, Yingjie
    Chen, Kunfeng
    Xue, Dongfeng
    APPLIED MATERIALS TODAY, 2020, 20
  • [50] Progress of Solid-state Electrolytes Used in Organic Secondary Batteries
    Wang, Shaolong
    Lv, Jing
    Wang, Xuehan
    Cui, Haixia
    Huang, Weiwei
    Wang, Yanzhi
    CHEMELECTROCHEM, 2022, 9 (02)