Dynamic fault detection and diagnosis of industrial alkaline water electrolyzer process with variational Bayesian dictionary learning

被引:3
作者
Zhang, Qi [1 ]
Lu, Shan [2 ]
Xie, Lei [1 ]
Xu, Weihua [1 ]
Su, Hongye [1 ]
机构
[1] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[2] Shenzhen Polytech, Inst Intelligence Sci & Engn, Shenzhen 51805, Peoples R China
关键词
Alkaline water electrolytic; Bayesian dictionary learning; Process monitoring; Data-driven method; Fault detection and diagnosis; HYDROGEN-PRODUCTION; ENERGY; TECHNOLOGIES; ALGORITHMS; SYSTEMS; COST;
D O I
10.1016/j.ijhydene.2023.03.373
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alkaline Water Electrolysis (AWE) is one of the simplest green hydrogen production method using renewable energy. AWE system typically yields process variables that are serially correlated and contaminated by measurement uncertainty. A novel robust dynamic variational Bayesian dictionary learning (RDVDL) monitoring approach is proposed to improve the reliability and safety of AWE operation. RDVDL employs a sparse Bayesian dictionary learning to preserve the dynamic mechanism information of AWE process which allows the easy interpretation of fault detection results. To improve the robustness to measurement uncertainty, a low-rank vector autoregressive (VAR) method is derived to reliably extract the serial correlation from process variables. The effectiveness of the proposed approach is demonstrated with an industrial hydrogen production process, and RDVDL can efficiently detect and diagnose critical AWE faults. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1492 / 1506
页数:15
相关论文
共 55 条
[11]   Compressed sensing based on dictionary learning for extracting impulse components [J].
Chen, Xuefeng ;
Du, Zhaohui ;
Li, Jimeng ;
Li, Xiang ;
Zhang, Han .
SIGNAL PROCESSING, 2014, 96 :94-109
[12]   Advances in alkaline water electrolyzers: A review [J].
David, Martin ;
Ocampo-Martinez, Carlos ;
Sanchez-Pena, Ricardo .
JOURNAL OF ENERGY STORAGE, 2019, 23 :392-403
[13]   Review and evaluation of hydrogen production methods for better sustainability [J].
Dincer, Ibrahim ;
Acar, Canan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (34) :11094-11111
[14]   New Dynamic Predictive Monitoring Schemes Based on Dynamic Latent Variable Models [J].
Dong, Yining ;
Qin, Joe S. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (06) :2353-2365
[15]   Dynamic latent variable analytics for process operations and control [J].
Dong, Yining ;
Qin, S. Joe .
COMPUTERS & CHEMICAL ENGINEERING, 2018, 114 :69-80
[16]   Hydrogen production in the electrolysis of water in Brazil, a review [J].
dos Santos, Kenia Gabriela ;
Eckert, Caroline Thais ;
De Rossi, Eduardo ;
Bariccatti, Reinaldo Aparecido ;
Frigo, Elisandro Pires ;
Lindino, Cleber Antonio ;
Alves, Helton Jose .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 68 :563-571
[17]   Recent development of hydrogen and fuel cell technologies: A review [J].
Fan, Lixin ;
Tu, Zhengkai ;
Chan, Siew Hwa .
ENERGY REPORTS, 2021, 7 :8421-8446
[18]   A review of biohydrogen production technology for application towards hydrogen fuel cells [J].
Ferraren-De Cagalitan, D. D. T. ;
Abundo, M. L. S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 151
[19]   Global Carbon Budget 2021 [J].
Friedlingstein, Pierre ;
Jones, Matthew W. ;
O'Sullivan, Michael ;
Andrew, Robbie M. ;
Bakker, Dorothee C. E. ;
Hauck, Judith ;
Le Quere, Corinne ;
Peters, Glen P. ;
Peters, Wouter ;
Pongratz, Julia ;
Sitch, Stephen ;
Canadell, Josep G. ;
Ciais, Philippe ;
Jackson, Rob B. ;
Alin, Simone R. ;
Anthoni, Peter ;
Bates, Nicholas R. ;
Becker, Meike ;
Bellouin, Nicolas ;
Bopp, Laurent ;
Chau, Thi Tuyet Trang ;
Chevallier, Frederic ;
Chini, Louise P. ;
Cronin, Margot ;
Currie, Kim I. ;
Decharme, Bertrand ;
Djeutchouang, Laique M. ;
Dou, Xinyu ;
Evans, Wiley ;
Feely, Richard A. ;
Feng, Liang ;
Gasser, Thomas ;
Gilfillan, Dennis ;
Gkritzalis, Thanos ;
Grassi, Giacomo ;
Gregor, Luke ;
Gruber, Nicolas ;
Gurses, Ozgur ;
Harris, Ian ;
Houghton, Richard A. ;
Hurtt, George C. ;
Iida, Yosuke ;
Ilyina, Tatiana ;
Luijkx, Ingrid T. ;
Jain, Atul ;
Jones, Steve D. ;
Kato, Etsushi ;
Kennedy, Daniel ;
Klein Goldewijk, Kees ;
Knauer, Jurgen .
EARTH SYSTEM SCIENCE DATA, 2022, 14 (04) :1917-2005
[20]   Dimensionality reduction via compressive sensing [J].
Gao, Junbin ;
Shi, Qinfeng ;
Caetano, Tiberio S. .
PATTERN RECOGNITION LETTERS, 2012, 33 (09) :1163-1170