Dynamic fault detection and diagnosis of industrial alkaline water electrolyzer process with variational Bayesian dictionary learning

被引:3
作者
Zhang, Qi [1 ]
Lu, Shan [2 ]
Xie, Lei [1 ]
Xu, Weihua [1 ]
Su, Hongye [1 ]
机构
[1] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[2] Shenzhen Polytech, Inst Intelligence Sci & Engn, Shenzhen 51805, Peoples R China
关键词
Alkaline water electrolytic; Bayesian dictionary learning; Process monitoring; Data-driven method; Fault detection and diagnosis; HYDROGEN-PRODUCTION; ENERGY; TECHNOLOGIES; ALGORITHMS; SYSTEMS; COST;
D O I
10.1016/j.ijhydene.2023.03.373
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alkaline Water Electrolysis (AWE) is one of the simplest green hydrogen production method using renewable energy. AWE system typically yields process variables that are serially correlated and contaminated by measurement uncertainty. A novel robust dynamic variational Bayesian dictionary learning (RDVDL) monitoring approach is proposed to improve the reliability and safety of AWE operation. RDVDL employs a sparse Bayesian dictionary learning to preserve the dynamic mechanism information of AWE process which allows the easy interpretation of fault detection results. To improve the robustness to measurement uncertainty, a low-rank vector autoregressive (VAR) method is derived to reliably extract the serial correlation from process variables. The effectiveness of the proposed approach is demonstrated with an industrial hydrogen production process, and RDVDL can efficiently detect and diagnose critical AWE faults. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1492 / 1506
页数:15
相关论文
共 55 条
[1]   Hydrogen as an energy vector [J].
Abdin, Zainul ;
Zafaranloo, Ali ;
Rafiee, Ahmad ;
Merida, Walter ;
Lipinski, Wojciech ;
Khalilpour, Kaveh R. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 120
[2]   Hydrogen energy, economy and storage: Review and recommendation [J].
Abe, J. O. ;
Popoola, A. P. I. ;
Ajenifuja, E. ;
Popoola, O. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (29) :15072-15086
[3]   Selection criteria and ranking for sustainable hydrogen production options [J].
Acar, Canan ;
Dincer, Ibrahim .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (95) :40118-40137
[4]   Hydrogen production through renewable and non-renewable energy processes and their impact on climate change [J].
Amin, Muhammad ;
Shah, Hamad Hussain ;
Fareed, Anaiz Gul ;
Khan, Wasim Ullah ;
Chung, Eunhyea ;
Zia, Adeel ;
Farooqi, Zia Ur Rahman ;
Lee, Chaehyeon .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (77) :33112-33134
[5]   An overview: Current progress on hydrogen fuel cell vehicles [J].
Aminudin, M. A. ;
Kamarudin, S. K. ;
Lim, B. H. ;
Majilan, E. H. ;
Masdar, M. S. ;
Shaari, N. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (11) :4371-4388
[6]   Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions [J].
Arsad, A. Z. ;
Hannan, M. A. ;
Al-Shetwi, Ali Q. ;
Mansur, M. ;
Muttaqi, K. M. ;
Dong, Z. Y. ;
Blaabjerg, F. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (39) :17285-17312
[7]   Variational Bayesian Learning of Directed Graphical Models with Hidden Variables [J].
Beal, Matthew J. ;
Ghahramani, Zoubin .
BAYESIAN ANALYSIS, 2006, 1 (04) :793-831
[8]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[9]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[10]   Sustainability and challenges in hydrogen production: An advanced bibliometric analysis [J].
Catumba, Batista Dala ;
Sales, Misael Bessa ;
Borges, Pedro Tavares ;
Filho, Manoel Nazareno Ribeiro ;
Lopes, Ada Amelia Sanders ;
Rios, Maria Alexsandra de Sousa ;
Desai, Ajay S. ;
Bilal, Muhammad ;
dos Santos, Jose Cleiton Sousa .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (22) :7975-7992