Current status and future directions in artificial intelligence for nuclear cardiology

被引:2
作者
Miller, Robert J. H. [1 ,2 ,3 ]
Slomka, Piotr J. [1 ,2 ]
机构
[1] Cedars Sinai Med Ctr, Dept Med, Div Artificial Intelligence Med, 6500 Wilshire Blvd, Los Angeles, CA 90048 USA
[2] Cedars Sinai Med Ctr, Div Artificial Intelligence Med, Dept Biomed Sci & Imaging, 6500 Wilshire Blvd, Los Angeles, CA 90048 USA
[3] Univ Calgary, Dept Cardiac Sci, Calgary, AB, Canada
关键词
Artificial intelligence; deep learning; hybrid imaging; machine learning; myocardial perfusion imaging; nuclear cardiology; CORONARY-ARTERY-DISEASE; ABNORMAL CARDIAC UPTAKE; VISCERAL ABDOMINAL FAT; PERICARDIAL FAT; RISK-FACTORS; SPECT; CALCIUM; ASSOCIATION; CT;
D O I
10.1080/14779072.2024.2380764
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
IntroductionMyocardial perfusion imaging (MPI) is one of the most commonly ordered cardiac imaging tests. Accurate motion correction, image registration, and reconstruction are critical for high-quality imaging, but this can be technically challenging and has traditionally relied on expert manual processing. With accurate processing, there is a rich variety of clinical, stress, functional, and anatomic data that can be integrated to guide patient management.Areas coveredPubMed and Google Scholar were reviewed for articles related to artificial intelligence in nuclear cardiology published between 2020 and 2024. We will outline the prominent roles for artificial intelligence (AI) solutions to provide motion correction, image registration, and reconstruction. We will review the role for AI in extracting anatomic data for hybrid MPI which is otherwise neglected. Lastly, we will discuss AI methods to integrate the wealth of data to improve disease diagnosis or risk stratification.Expert opinionThere is growing evidence that AI will transform the performance of MPI by automating and improving on aspects of image acquisition and reconstruction. Physicians and researchers will need to understand the potential strengths of AI in order to benefit from the full clinical utility of MPI.
引用
收藏
页码:367 / 378
页数:12
相关论文
共 109 条
[71]   Handling missing values in machine learning to predict patient-specific risk of adverse cardiac events: Insights from REFINE SPECT registry [J].
Rios, Richard ;
Miller, Robert J. H. ;
Manral, Nipun ;
Sharir, Tali ;
Einstein, Andrew J. ;
Fish, Mathews B. ;
Ruddy, Terrence D. ;
Kaufmann, Philipp A. ;
Sinusas, Albert J. ;
Miller, Edward J. ;
Bateman, Timothy M. ;
Dorbala, Sharmila ;
Di Carli, Marcelo ;
Van Kriekinge, Serge D. ;
Kavanagh, Paul B. ;
Parekh, Tejas ;
Liang, Jonna X. ;
Dey, Damini ;
Berman, Daniel S. ;
Slomka, Piotr J. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
[72]   Determining a minimum set of variables for machine learning cardiovascular event prediction: results from REFINE SPECT registry [J].
Rios, Richard ;
Miller, Robert J. H. ;
Hu, Lien-Hsin ;
Otaki, Yuka ;
Singh, Ananya ;
Diniz, Marcio ;
Sharir, Tali ;
Einstein, Andrew J. ;
Fish, Mathews B. ;
Ruddy, Terrence D. ;
Kaufmann, Philipp A. ;
Sinusas, Albert J. ;
Miller, Edward J. ;
Bateman, Timothy M. ;
Dorbala, Sharmila ;
Di Carli, Marcelo ;
Van Kriekinge, Serge ;
Kavanagh, Paul ;
Parekh, Tejas ;
Liang, Joanna X. ;
Dey, Damini ;
Berman, Daniel S. ;
Slomka, Piotr .
CARDIOVASCULAR RESEARCH, 2022, 118 (09) :2152-2164
[73]   Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample - The framingham heart study [J].
Rosito, Guido A. ;
Massaro, Joseph M. ;
Hoffmann, Udo ;
Ruberg, Frederick L. ;
Mahabadi, Amir A. ;
Vasan, Ramachandran S. ;
O'Donnell, Christopher J. ;
Fox, Caroline S. .
CIRCULATION, 2008, 117 (05) :605-613
[74]   Myocardial Perfusion SPECT Imaging Radiomic Features and Machine Learning Algorithms for Cardiac Contractile Pattern Recognition [J].
Sabouri, Maziar ;
Hajianfar, Ghasem ;
Hosseini, Zahra ;
Amini, Mehdi ;
Mohebi, Mobin ;
Ghaedian, Tahereh ;
Madadi, Shabnam ;
Rastgou, Fereydoon ;
Oveisi, Mehrdad ;
Rajabi, Ahmad Bitarafan ;
Shiri, Isaac ;
Zaidi, Habib .
JOURNAL OF DIGITAL IMAGING, 2023, 36 (02) :497-509
[75]   Incidental Coronary Artery Calcium: Opportunistic Screening of Previous Nongated Chest Computed Tomography Scans to Improve Statin Rates (NOTIFY-1 Project) [J].
Sandhu, Alexander T. ;
Rodriguez, Fatima ;
Ngo, Summer ;
Patel, Bhavik N. ;
Mastrodicasa, Domenico ;
Eng, David ;
Khandwala, Nishith ;
Balla, Sujana ;
Sousa, Doug ;
Maron, David J. .
CIRCULATION, 2023, 147 (09) :703-714
[76]  
Schaefferkoetter J, 2023, EUR J NUCL MED MOL I, V50, P2292, DOI 10.1007/s00259-023-06181-9
[77]  
Selvaraju RR, 2020, INT J COMPUT VISION, V128, P336, DOI [10.1007/s11263-019-01228-7, 10.1109/ICCV.2017.74]
[78]   Deep Learning-Based Attenuation Correction Improves Diagnostic Accuracy of Cardiac SPECT [J].
Shanbhag, Aakash D. ;
Miller, Robert J. H. ;
Pieszko, Konrad ;
Lemley, Mark ;
Kavanagh, Paul ;
Feher, Attila ;
Miller, Edward J. ;
Sinusas, Albert J. ;
Kaufmann, Philipp A. ;
Han, Donghee ;
Huang, Cathleen ;
Liang, Joanna X. ;
Berman, Daniel S. ;
Dey, Damini ;
Slomka, Piotr J. .
JOURNAL OF NUCLEAR MEDICINE, 2023, 64 (03) :472-478
[79]   Automatic Inter-Frame Patient Motion Correction for Dynamic Cardiac PET Using Deep Learning [J].
Shi, Luyao ;
Lu, Yihuan ;
Dvornek, Nicha ;
Weyman, Christopher A. ;
Miller, Edward J. ;
Sinusas, Albert J. ;
Liu, Chi .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (12) :3293-3304
[80]   Deep learning-based attenuation map generation for myocardial perfusion SPECT [J].
Shi, Luyao ;
Onofrey, John A. ;
Liu, Hui ;
Liu, Yi-Hwa ;
Liu, Chi .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (10) :2383-2395