Current status and future directions in artificial intelligence for nuclear cardiology

被引:0
作者
Miller, Robert J. H. [1 ,2 ,3 ]
Slomka, Piotr J. [1 ,2 ]
机构
[1] Cedars Sinai Med Ctr, Dept Med, Div Artificial Intelligence Med, 6500 Wilshire Blvd, Los Angeles, CA 90048 USA
[2] Cedars Sinai Med Ctr, Div Artificial Intelligence Med, Dept Biomed Sci & Imaging, 6500 Wilshire Blvd, Los Angeles, CA 90048 USA
[3] Univ Calgary, Dept Cardiac Sci, Calgary, AB, Canada
关键词
Artificial intelligence; deep learning; hybrid imaging; machine learning; myocardial perfusion imaging; nuclear cardiology; CORONARY-ARTERY-DISEASE; ABNORMAL CARDIAC UPTAKE; VISCERAL ABDOMINAL FAT; PERICARDIAL FAT; RISK-FACTORS; SPECT; CALCIUM; ASSOCIATION; CT;
D O I
10.1080/14779072.2024.2380764
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
IntroductionMyocardial perfusion imaging (MPI) is one of the most commonly ordered cardiac imaging tests. Accurate motion correction, image registration, and reconstruction are critical for high-quality imaging, but this can be technically challenging and has traditionally relied on expert manual processing. With accurate processing, there is a rich variety of clinical, stress, functional, and anatomic data that can be integrated to guide patient management.Areas coveredPubMed and Google Scholar were reviewed for articles related to artificial intelligence in nuclear cardiology published between 2020 and 2024. We will outline the prominent roles for artificial intelligence (AI) solutions to provide motion correction, image registration, and reconstruction. We will review the role for AI in extracting anatomic data for hybrid MPI which is otherwise neglected. Lastly, we will discuss AI methods to integrate the wealth of data to improve disease diagnosis or risk stratification.Expert opinionThere is growing evidence that AI will transform the performance of MPI by automating and improving on aspects of image acquisition and reconstruction. Physicians and researchers will need to understand the potential strengths of AI in order to benefit from the full clinical utility of MPI.
引用
收藏
页码:367 / 378
页数:12
相关论文
共 109 条
  • [1] Machine learning-based diagnosis and risk classification of coronary artery disease using myocardial perfusion imaging SPECT: A radiomics study
    Amini, Mehdi
    Pursamimi, Mohamad
    Hajianfar, Ghasem
    Salimi, Yazdan
    Saberi, Abdollah
    Mehri-Kakavand, Ghazal
    Nazari, Mostafa
    Ghorbani, Mahdi
    Shalbaf, Ahmad
    Shiri, Isaac
    Zaidi, Habib
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Comparison of Fully Automated Computer Analysis and Visual Scoring for Detection of Coronary Artery Disease from Myocardial Perfusion SPECT in a Large Population
    Arsanjani, Reza
    Xu, Yuan
    Hayes, Sean W.
    Fish, Mathews
    Lemley, Mark, Jr.
    Gerlach, James
    Dorbala, Sharmila
    Berman, Daniel S.
    Germano, Guido
    Slomka, Piotr
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2013, 54 (02) : 221 - 228
  • [3] Machine and deep learning models for accurate detection of ischemia and scar with myocardial blood flow positron emission tomography imaging
    Berman, Daniel
    Hunter, Chad
    Hossain, Alomgir
    Yao, Jason
    Workman, Emily
    Guan, Steven
    Strickhart, Laura
    Beanlands, Rob
    Slater, David
    Dekemp, Robert A.
    [J]. JOURNAL OF NUCLEAR CARDIOLOGY, 2024, 32
  • [4] Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study
    Betancur, Julian
    Hu, Lien-Hsin
    Commandeur, Frederic
    Sharir, Tali
    Einstein, Andrew J.
    Fish, Mathews B.
    Ruddy, Terrence D.
    Kaufmann, Philipp A.
    Sinusas, Albert J.
    Miller, Edward J.
    Bateman, Timothy M.
    Dorbala, Sharmila
    Di Carli, Marcelo
    Germano, Guido
    Otaki, Yuka
    Liang, Joanna X.
    Tamarappoo, Balaji K.
    Dey, Damini
    Berman, Daniel S.
    Slomka, Piotr J.
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2019, 60 (05) : 664 - 670
  • [5] Prognostic Value of Combined Clinical and Myocardial Perfusion Imaging Data Using Machine Learning
    Betancur, Julian
    Otaki, Yuka
    Motwani, Manish
    Fish, Mathews B.
    Lemley, Mark
    Dey, Damini
    Gransar, Heidi
    Tamarappoo, Balaji
    Germano, Guido
    Sharir, Tali
    Berman, Daniel S.
    Slomka, Piotr J.
    [J]. JACC-CARDIOVASCULAR IMAGING, 2018, 11 (07) : 1000 - 1009
  • [6] Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT A Multicenter Study
    Betancur, Julian
    Commandeur, Frederic
    Motlagh, Mahsaw
    Sharir, Tali
    Einstein, Andrew J.
    Bokhari, Sabahat
    Fish, Mathews B.
    Ruddy, Terrence D.
    Kaufmann, Philipp
    Sinusas, Albert J.
    Miller, Edward J.
    Bateman, Timothy M.
    Dorbala, Sharmila
    Di Carli, Marcelo
    Germano, Guido
    Otaki, Yuka
    Tamarappoo, Balaji K.
    Dey, Damini
    Berman, Daniel S.
    Slomka, Piotr J.
    [J]. JACC-CARDIOVASCULAR IMAGING, 2018, 11 (11) : 1654 - 1663
  • [7] Artificial Intelligence Algorithms Need to Be Explainable-or Do They?
    Bradshaw, Tyler J.
    McCradden, Melissa D.
    Jha, Abhinav K.
    Dutta, Joyita
    Saboury, Babak
    Siegel, Eliot L.
    Rahmim, Arman
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2023, 64 (06) : 976 - 977
  • [8] Cross-vender, cross-tracer, and cross-protocol deep transfer learning for attenuation map generation of cardiac SPECT
    Chen, Xiongchao
    Hendrik Pretorius, P.
    Zhou, Bo
    Liu, Hui
    Johnson, Karen
    Liu, Yi-Hwa
    King, Michael A.
    Liu, Chi
    [J]. JOURNAL OF NUCLEAR CARDIOLOGY, 2022, 29 (06) : 3379 - 3391
  • [9] DuSFE: Dual-Channel Squeeze-Fusion-Excitation co-attention for cross-modality registration of cardiac SPECT and CT
    Chen, Xiongchao
    Zhou, Bo
    Xie, Huidong
    Guo, Xueqi
    Zhang, Jiazhen
    Duncan, James S.
    Miller, Edward J.
    Sinusas, Albert J.
    Onofrey, John A.
    Liu, Chi
    [J]. MEDICAL IMAGE ANALYSIS, 2023, 88
  • [10] DuDoSS: Deep-learning-based dual-domain sinogram synthesis from sparsely sampled projections of cardiac SPECT
    Chen, Xiongchao
    Zhou, Bo
    Xie, Huidong
    Miao, Tianshun
    Liu, Hui
    Holler, Wolfgang
    Lin, MingDe
    Miller, Edward J.
    Carson, Richard E.
    Sinusas, Albert J.
    Liu, Chi
    [J]. MEDICAL PHYSICS, 2023, 50 (01) : 89 - 103