Estimation of soybean yield based on high-throughput phenotyping and machine learning

被引:2
|
作者
Li, Xiuni [1 ,2 ,3 ]
Chen, Menggen [1 ,2 ,3 ]
He, Shuyuan [1 ,2 ,3 ]
Xu, Xiangyao [1 ,2 ,3 ]
He, Lingxiao [1 ,2 ,3 ]
Wang, Li [1 ,2 ,3 ]
Gao, Yang [1 ,2 ,3 ]
Tang, Fenda [1 ,2 ,3 ]
Gong, Tao [1 ,2 ,3 ]
Wang, Wenyan [1 ,2 ,3 ]
Xu, Mei [1 ,2 ,3 ]
Liu, Chunyan [1 ,2 ,3 ]
Yu, Liang [1 ,2 ,3 ]
Liu, Weiguo [1 ,2 ,3 ]
Yang, Wenyu [1 ,2 ,3 ]
机构
[1] Sichuan Agr Univ, Coll Agron, Chengdu, Peoples R China
[2] Sichuan Engn Res Ctr Crop Strip Intercropping Syst, Chengdu, Peoples R China
[3] Minist Agr, Key Lab Crop Ecophysiol & Farming Syst Southwest, Chengdu, Peoples R China
来源
关键词
RGB; soybean; yield; machine learning; estimation;
D O I
10.3389/fpls.2024.1395760
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Introduction Soybeans are an important crop used for food, oil, and feed. However, China's soybean self-sufficiency is highly inadequate, with an annual import volume exceeding 80%. RGB cameras serve as powerful tools for estimating crop yield, and machine learning is a practical method based on various features, providing improved yield predictions. However, selecting different input parameters and models, specifically optimal features and model effects, significantly influences soybean yield prediction.Methods This study used an RGB camera to capture soybean canopy images from both the side and top perspectives during the R6 stage (pod filling stage) for 240 soybean varieties (a natural population formed by four provinces in China: Sichuan, Yunnan, Chongqing, and Guizhou). From these images, the morphological, color, and textural features of the soybeans were extracted. Subsequently, feature selection was performed on the image parameters using a Pearson correlation coefficient threshold >= 0.5. Five machine learning methods, namely, CatBoost, LightGBM, RF, GBDT, and MLP, were employed to establish soybean yield estimation models based on the individual and combined image parameters from the two perspectives extracted from RGB images.Results (1) GBDT is the optimal model for predicting soybean yield, with a test set R2 value of 0.82, an RMSE of 1.99 g/plant, and an MAE of 3.12%. (2) The fusion of multiangle and multitype indicators is conducive to improving soybean yield prediction accuracy.Conclusion Therefore, this combination of parameters extracted from RGB images via machine learning has great potential for estimating soybean yield, providing a theoretical basis and technical support for accelerating the soybean breeding process.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Machine Learning for High-Throughput Stress Phenotyping in Plants
    Singh, Arti
    Ganapathysubramanian, Baskar
    Singh, Asheesh Kumar
    Sarkar, Soumik
    TRENDS IN PLANT SCIENCE, 2016, 21 (02) : 110 - 124
  • [2] Automated Machine Learning for High-Throughput Image-Based Plant Phenotyping
    Koh, Joshua C. O.
    Spangenberg, German
    Kant, Surya
    REMOTE SENSING, 2021, 13 (05) : 1 - 19
  • [3] UAV Remote Sensing for High-Throughput Phenotyping and for Yield Prediction of Miscanthus by Machine Learning Techniques
    Impollonia, Giorgio
    Croci, Michele
    Ferrarini, Andrea
    Brook, Jason
    Martani, Enrico
    Blandinieres, Henri
    Marcone, Andrea
    Awty-Carroll, Danny
    Ashman, Chris
    Kam, Jason
    Kiesel, Andreas
    Trindade, Luisa M.
    Boschetti, Mirco
    Clifton-Brown, John
    Amaducci, Stefano
    REMOTE SENSING, 2022, 14 (12)
  • [4] High-throughput phenotyping allows the selection of soybean genotypes for earliness and high grain yield
    Santana, Dthenifer Cordeiro
    de Oliveira Cunha, Marcos Paulo
    dos Santos, Regimar Garcia
    Cotrim, Mayara Favero
    Ribeiro Teodoro, Larissa Pereira
    da Silva Junior, Carlos Antonio
    Rojo Baio, Fabio Henrique
    Teodoro, Paulo Eduardo
    PLANT METHODS, 2022, 18 (01)
  • [5] High-throughput phenotyping allows the selection of soybean genotypes for earliness and high grain yield
    Dthenifer Cordeiro Santana
    Marcos Paulo de Oliveira Cunha
    Regimar Garcia dos Santos
    Mayara Fávero Cotrim
    Larissa Pereira Ribeiro Teodoro
    Carlos Antonio da Silva Junior
    Fabio Henrique Rojo Baio
    Paulo Eduardo Teodoro
    Plant Methods, 18
  • [6] High-throughput phenotyping for non-destructive estimation of soybean fresh biomass using a machine learning model and temporal UAV data
    Predrag Ranđelović
    Vuk Đorđević
    Jegor Miladinović
    Slaven Prodanović
    Marina Ćeran
    Johann Vollmann
    Plant Methods, 19
  • [7] High-throughput phenotyping for non-destructive estimation of soybean fresh biomass using a machine learning model and temporal UAV data
    Randelovic, Predrag
    Dordevic, Vuk
    Miladinovic, Jegor
    Prodanovic, Slaven
    Ceran, Marina
    Vollmann, Johann
    PLANT METHODS, 2023, 19 (01)
  • [8] Association between unmanned aerial vehicle high-throughput canopy phenotyping and soybean yield
    Casagrande, Cleiton Renato
    Sant'ana, Gustavo Cesar
    Meda, Anderson Rotter
    Garcia, Alexandre
    Souza Carneiro, Pedro Crescencio
    Nardino, Maicon
    Borem, Aluizio
    AGRONOMY JOURNAL, 2022, 114 (03) : 1581 - 1598
  • [9] Enhancing estimation of cover crop biomass using field-based high-throughput phenotyping and machine learning models
    Bai, Geng
    Koehler-Cole, Katja
    Scoby, David
    Thapa, Vesh R.
    Basche, Andrea
    Ge, Yufeng
    FRONTIERS IN PLANT SCIENCE, 2024, 14
  • [10] High-throughput soybean seeds phenotyping with convolutional neural networks and transfer learning
    Si Yang
    Lihua Zheng
    Peng He
    Tingting Wu
    Shi Sun
    Minjuan Wang
    Plant Methods, 17