Improved Hourly Estimates of Aerosol Optical Thickness Using Spatiotemporal Variability Derived From Himawari-8 Geostationary Satellite

被引:116
作者
Kikuchi, Maki [1 ]
Murakami, Hiroshi [1 ]
Suzuki, Kentaroh [2 ]
Nagao, Takashi M. [1 ]
Higurashi, Akiko [3 ]
机构
[1] Japan Aerosp Explorat Agcy, Earth Observat Res Ctr, Tsukuba, Ibaraki 3058505, Japan
[2] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba 2778568, Japan
[3] Natl Inst Environm Studies, Ctr Environm Measurement & Anal, Tsukuba, Ibaraki 3058506, Japan
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2018年 / 56卷 / 06期
关键词
Aerosols; algorithms; remote sensing; satellites; GOES-8; IMAGER; MODIS DATA; AERONET; MARITIME; NETWORK; CLOUD;
D O I
10.1109/TGRS.2018.2800060
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We developed a scheme to improve hourly estimates of aerosol optical thickness (AOT) from the Advanced Himawari Imager (AHI) onboard Himawari-8, the Japan Meteorological Agency's latest geostationary satellite. Taking advantage of the sampling characteristics of the AHI (10-min temporal and sub-kilometer spatial resolution), we quantify temporal and spatial variability of AOT from the observations (AOT(original)) and utilize this information to develop an hourly algorithm that produces two sets of derived AOTs: AOT(pure), derived by the application of strict cloud screening to AOT(original), and AOT(merged), derived from spatial and temporal interpolations of AOT(pure). The AOTs thus obtained from the hourly algorithm were validated against measurements from the aerosol robotic network. The root-mean-square errors (RMSEs) of the AOT(pure) and AOT(merged) products were 0.14 and 0.11, respectively, providing improvement over an RMSE of 0.20 for AOT(original).
引用
收藏
页码:3442 / 3455
页数:14
相关论文
共 35 条
  • [1] Alexandrov MD, 2016, J ATMOS SCI, V73, P821, DOI [10.1175/JAS-D-15-0130.1, 10.1175/jas-d-15-0130.1]
  • [2] [Anonymous], 2000, INVERSE METHODS ATMO
  • [3] Awaji T., 2009, DATA ASSIMILATION IN
  • [4] Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001
    Barnaba, F
    Gobbi, GP
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2004, 4 : 2367 - 2391
  • [5] Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation
    Benedetti, A.
    Morcrette, J. -J.
    Boucher, O.
    Dethof, A.
    Engelen, R. J.
    Fisher, M.
    Flentje, H.
    Huneeus, N.
    Jones, L.
    Kaiser, J. W.
    Kinne, S.
    Mangold, A.
    Razinger, M.
    Simmons, A. J.
    Suttie, M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
  • [6] An Introduction to Himawari-8/9-Japan's New-Generation Geostationary Meteorological Satellites
    Bessho, Kotaro
    Date, Kenji
    Hayashi, Masahiro
    Ikeda, Akio
    Imai, Takahito
    Inoue, Hidekazu
    Kumagai, Yukihiro
    Miyakawa, Takuya
    Murata, Hidehiko
    Ohno, Tomoo
    Okuyama, Arata
    Oyama, Ryo
    Sasaki, Yukio
    Shimazu, Yoshio
    Shimoji, Kazuki
    Sumida, Yasuhiko
    Suzuki, Masuo
    Taniguchi, Hidetaka
    Tsuchiyama, Hiroaki
    Uesawa, Daisaku
    Yokota, Hironobu
    Yoshida, Ryo
    [J]. JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2016, 94 (02) : 151 - 183
  • [7] Christopher SA, 2002, J ATMOS SCI, V59, P681, DOI 10.1175/1520-0469(2002)059<0681:DVOSDR>2.0.CO
  • [8] 2
  • [9] Long-term variability of aerosol optical thickness in Eastern Europe over 2001-2014 according to the measurements at the Moscow MSU MO AERONET site with additional cloud and NO2 correction
    Chubarova, N. Y.
    Poliukhov, A. A.
    Gorlova, I. D.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (02) : 313 - 334
  • [10] Deepack A., 1983, Report of The Experts Meeting on Aerosols and Their Climate Effects, WCP-55, P107