BPNet: Bezier Primitive Segmentation on 3D Point Clouds

被引:0
|
作者
Fu, Rao [1 ,2 ]
Wen, Cheng [3 ]
Li, Qian [1 ]
Xiao, Xiao [4 ]
Alliez, Pierre [1 ]
机构
[1] INRIA, Paris, France
[2] Geometry Factory, Valbonne, France
[3] Univ Sydney, Camperdown, Australia
[4] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
来源
PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023 | 2023年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes BPNet, a novel end-to-end deep learning framework to learn B ' ezier primitive segmentation on 3D point clouds. The existing works treat different primitive types separately, thus limiting them to finite shape categories. To address this issue, we seek a generalized primitive segmentation on point clouds. Taking inspiration from B ' ezier decomposition on NURBS models, we transfer it to guide point cloud segmentation casting off primitive types. A joint optimization framework is proposed to learn B ' ezier primitive segmentation and geometric fitting simultaneously on a cascaded architecture. Specifically, we introduce a soft voting regularizer to improve primitive segmentation and propose an auto-weight embedding module to cluster point features, making the network more robust and generic. We also introduce a reconstruction module where we successfully process multiple CAD models with different primitives simultaneously. We conducted extensive experiments on the synthetic ABC dataset and real-scan datasets to validate and compare our approach with different baseline methods. Experiments show superior performance over previous work in terms of segmentation, with a substantially faster inference speed.
引用
收藏
页码:754 / 762
页数:9
相关论文
共 50 条
  • [1] On the Segmentation of 3D LIDAR Point Clouds
    Douillard, B.
    Underwood, J.
    Kuntz, N.
    Vlaskine, V.
    Quadros, A.
    Morton, P.
    Frenkel, A.
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [2] SoftGroup for 3D Instance Segmentation on Point Clouds
    Thang Vu
    Kim, Kookhoi
    Luu, Tung M.
    Thanh Nguyen
    Yoo, Chang D.
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2698 - 2707
  • [3] Interactive Object Segmentation in 3D Point Clouds
    Kontogianni, Theodora
    Celikkan, Ekin
    Tang, Siyu
    Schindler, Konrad
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 2891 - 2897
  • [4] SEGCloud: Semantic Segmentation of 3D Point Clouds
    Tchapmi, Lyne P.
    Choy, Christopher B.
    Armeni, Iro
    Gwak, JunYoung
    Savarese, Silvio
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2017, : 537 - 547
  • [5] Point attention network for semantic segmentation of 3D point clouds
    Feng, Mingtao
    Zhang, Liang
    Lin, Xuefei
    Gilani, Syed Zulqarnain
    Mian, Ajmal
    PATTERN RECOGNITION, 2020, 107 (107)
  • [6] Scalable SoftGroup for 3D Instance Segmentation on Point Clouds
    Vu, Thang
    Kim, Kookhoi
    Nguyen, Thanh
    Luu, Tung M.
    Kim, Junyeong
    Yoo, Chang D.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (04) : 1981 - 1995
  • [7] Fast Segmentation of 3D Point Clouds for Ground Vehicles
    Himmelsbach, M.
    v. Hundelshausen, Felix
    Wuensche, H. -J.
    2010 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2010, : 560 - 565
  • [8] GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds
    Zhang, Zihui
    Yang, Bo
    Wang, Bing
    Li, Bo
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17619 - 17629
  • [9] 3D Segmentation of Humans in Point Clouds with Synthetic Data
    Takmaz, Ayca
    Schult, Jonas
    Kaftan, Irem
    Akcay, Mertcan
    Leibe, Bastian
    Sumner, Robert
    Engelmann, Francis
    Tang, Siyu
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 1292 - 1304
  • [10] Recurrent Slice Networks for 3D Segmentation of Point Clouds
    Huang, Qiangui
    Wang, Weiyue
    Neumann, Ulrich
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2626 - 2635