Infinitely many sign-changing solutions for planar Schrödinger-Poisson system

被引:1
作者
Zhou, Jianwen [1 ]
Yang, Lu [1 ]
Yu, Yuanyang [1 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Kunming, Peoples R China
关键词
Planar Schr & ouml; dinger-Poisson system; the perturbation method; existence; sign-changing solutions; LINEAR ELLIPTIC-EQUATIONS; NODAL SOLUTIONS; THOMAS-FERMI; SCHRODINGER; ATOMS; HARTREE;
D O I
10.1080/00036811.2024.2376844
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following planar Schr & ouml;dinger-Poisson system \[ \left\{ \begin{aligned} & -\Delta u +V(x)u + \phi u=|u|<^>{q-2}u,\ {\rm in} \ \mathbb{R}<^>2,\cr & \Delta \phi =u<^>2 ,\ {\rm in}\ \mathbb{R}<^>2, \end{aligned}\right. \]{-Delta u+V(x)u+phi u=|u|q-2u,inR2,Delta phi=u2,inR2, where the potential $ V:\mathbb {R}<^>2\to \mathbb {R} $ V:R2 -> R is continuous and coercive. By using the method of perturbation and invariant sets of descending flow, we obtain the existence of infinitely many sign-changing solutions for this system.
引用
收藏
页码:612 / 628
页数:17
相关论文
共 34 条
[1]  
[Anonymous], 1997, Analysis
[2]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[3]   Nodal solutions of a p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :129-152
[4]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[5]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[6]   BINDING OF ATOMS AND STABILITY OF MOLECULES IN HARTREE AND THOMAS-FERMI TYPE THEORIES .4. BINDING OF NEUTRAL SYSTEMS FOR THE HARTREE MODEL [J].
CATTO, I ;
LIONS, PL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (7-8) :1149-1159
[7]   Positive solutions for some non-autonomous Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Vaira, Giusi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :521-543
[8]   On the planar Schrodinger-Poisson system with the axially symmetric potential [J].
Chen, Sitong ;
Tang, Xianhua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) :945-976
[9]   EXISTENCE OF GROUND STATE SOLUTIONS FOR THE PLANAR AXIALLY SYMMETRIC SCHRODINGER-POISSON SYSTEM [J].
Chen, Sitong ;
Tang, Xianhua .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (09) :4685-4702
[10]  
Chu CM., 2023, J FUNCT SPACE, V5, P9